Chapter 5 Phase Equilibrium

5.1 The Fundamental Fact of Phase Equilibrium

1. 基本定義及名詞

(1) phase — a region of system inside which intensive properties do not change abruptly as a function of position

(2) condense phase - liquid, solid
vapor phase
allotropy 同素異形體	polymorphism 多相性

有時要分辨很曖昧，如：

diamond 與 graphite
O₂ 與 O₃

課本認為 gas 只有一種 phase

2. 相平衡之特性

以 I 及 II 表不同 phase，

對 2-phase 之 closed system

\[\sum_{i=1}^{2} n_i = \sum_{i=1}^{2} \left(n_i^{(I)} + n_i^{(II)} \right) \]

因

\[n_i^{(I)} + n_i^{(II)} = n_i \]

\[i = 1, 2, \cdots \] (表 component)

故

\[dG = -S^{(I)} dT + V^{(I)} dP + \sum_{i=1}^{2} \mu_i^{(I)} dn_i^{(I)} + \sum_{i=1}^{2} \mu_i^{(II)} dn_i^{(II)} \]

定溫定壓下，

\[dT = dP = 0 \]

\[= \sum_{i=1}^{2} (\mu_i^{(I)} - \mu_i^{(II)}) dn_i^{(I)} = 0 \] (平衡時)

指 partial molar G

如未達平衡，則 \(dG < 0 \) 為 spontaneous process

① 如 \(\mu_i^{(I)} > \mu_i^{(II)} \)，則 \(dn_i^{(I)} < 0 \)

② 如 \(\mu_i^{(I)} < \mu_i^{(II)} \)，則 \(dn_i^{(I)} > 0 \)

即：物質由高 \(\mu \) 流向低 \(\mu \)

此即為何叫 \(\mu \) 為 “chemical potential” 之故

5.2 The Gibbs Phase Rule

(1) 對 1-phase, c-component, 要 \(c + 2 \) variables (含總 mole 數)

但如只有 intensive variable，則只要 \(c + 1 \) （總 mole 數可省掉，或是 \(\sum x_i = 1 \)）

(2) p-phase, c-component

\[f: \text{number of independent intensive variables (degree of freedom)} \]

\[f = c - p + 2 \] Gibbs phase rule
物理化學—應用化學系 李遠鵬老師

理由 A：原要 $cp + 2$ variable

但有 p 個 equation

即 $\mu_1^{(i)} = \mu_1^{(ii)} = \mu_1^{(iii)} = \cdots = \mu_1^{(N)}$ 且 $cp + 2 - c(p-1) = c - p + 2$

理由 B：每一 component 在各 phase 中 μ 相等，只需一個 μ，共 c 個

加上 T 及 P 有 c 個 equation

Mortimer 用：$f = p(c+1) - (p-1)(c+2) = c - p + 2$

Note：f 並不包含總 mole 數

但在算 c 時，如看成 “濃度” 之 parameter 數，則包含總 mole 數（下一節詳述 c 之算法）

此多出來的一個 parameter，若 single phase ($p = 1$) 時就減掉了

例：1-component system:

$p = 1, f = 2$ (P, V, T 中任 2 個)

$p = 2, f = 1$ 雨相之平衡 (即下圖中之三條曲線) e.g. specify P or T for H$_2$O (l, g)

$p = 3, f = 0$ triple point (即下圖中之點 A) P, T 是固定的，不能變

以水之 phase diagram 說明：

同理，溶有空氣的水凝固點下降才會變成 0℃

for 純水，一般的水溶有空氣，故沸點上升變成 100℃

(3) number of component

$c =$ number of substance – number of relations

① 化學平衡

② 電性中和

③ 化學計量（含：配製時之比例）

另一種看法即：需要多少種 substance (mixture) 來準備
例：① H_2, O_2, H_2O 混合物 $c = 3$
如有催化劑促其達平衡 $c = 2$ catalyst 不算
如原來放入 2:1 之 $H_2 : O_2$ $c = 1$ （或：先放 H_2O 及 catalyst）
即：需要一種 substance 來 prepare

② NaCl, NaBr 溶於水, $c = 3$ 即：Na^+, Cl^-, Br^-
<算法 1>：有 H_2O, Na^+, Cl^-, Br^-, $c = 4$, 但 $[Na^+] = [Cl^-] + [Br^-]$, 故 $c = 3$
<算法 2>：有 H_2O, H^+, OH^-, Na^+, Cl^-, Br^-, $c = 6$, 但 $H_2O = H^+ + OH^-$, $[H^+] = [OH^-]$
$[Na^+] = [Cl^-] + [Br^-]$, 故 $c = 3$
<算法 3>：$c = 3$ 因可以用上述三種物質製備
>Note>: c 是仍考慮總 mole 數是一個 parameter 的
③ 如果 solution 中含 Na^+, K^+, Cl^-, Br^-, Li^+, 則 $c = 5$
因爲可以用 NaCl,KCl,KBr,LiCl加水
但 Na^+, Cl^-, K^+, Br^-, $c = 4$ (KCl, NaCl, KBr, NaBr 只要其中 3 個再加 H_2O 即可)
故 $5 - 1 = 4$ （電中性）
④ Ca^{2+} 及 Cl^- in H_2O, 則 $c = 2$ （因電中性, 故 $c = 3 - 1$）
或考慮非用 $CaCl_2$ 及水配不可
如果是飽和水溶液, 則 $c = 1$, $f = 1 - 2 + 2 = 1$ (溫度或壓力)
雖是水及固體兩種, 但濃度是固定的, 故只要知水之 mole 數
5.3 Phase equilibrium in 1-component systems

平衡時，$G^i = G^{ii}$，如果改變一下溫度 dT，則 dP 會隨之而變

達到新的平衡後，$G^{i'} = G^{ii'}$，故 $dG^i = dG^{ii'}$

$$-S^{(i)}dT + V^{(i)}dP = -S^{(ii)}dT + V^{(ii)}dP$$

$$\frac{dP}{dT} = \frac{\Delta S}{\Delta V}$$

Clapeyron Equation，$\Delta S = S^{(ii)} - S^{(i)}$，$\Delta V = V^{(ii)} - V^{(i)}$

Note: 其實即為 Maxwell relation $\left(\frac{\partial P}{\partial T}\right)_V = \left(\frac{\partial S}{\partial V}\right)_T$

(1) solid-liquid equilibrium (描述上頁相圖之曲線 AB)

$\Delta S / \Delta V$ 幾乎是 constant

$$P_2 - P_1 = \frac{\Delta S}{\Delta V}(T_2 - T_1) \approx \frac{\Delta H}{\Delta V} \frac{\Delta T}{T}$$

或是$$\frac{dP}{dT} = \frac{\Delta H}{T \Delta V}$$

$$(P_2 - P_1) = \frac{\Delta H}{\Delta V} \ln \frac{T_2}{T_1}$$

(例): $D_{\text{wax}} = 0.9917 \text{ g/cm}^3$，$\Delta H_f = 333.5 \text{ J/g} = 333.5 \text{ mPa/g}$

$D_{\text{water}} = 0.9998 \text{ g/cm}^3 \Rightarrow 3291 \text{ cm}^3 \cdot \text{atm/g}$

400 atm 冰之 mp？

$$\left(\frac{1}{0.9998} - \frac{1}{0.9917}\right) = \ln \frac{T_2}{273.15} - 10.9 \times 10^2$$

$$\ln \frac{T_2}{273.15} = \ln \frac{T_2}{273.15} - 270.2 \text{ K}, 低了2K$$

☆ 此即溜冰之道理

50 kg 在 $5 \times 0.2 \text{ cm}^2$ 冰刀上，即 $P = \frac{50 \times 9.8}{1 \times 10^{-4}} = 4.8 \times 10^6 \text{ Pascal} \approx 48 \text{ atm}$

$\Delta T \approx 0.35K$

(2) 液相與氣相之平衡 (描述上頁相圖之曲線 AC)

$$\Delta V \approx \frac{RT}{P}$$

故$$\frac{dP}{dT} = \frac{\Delta H}{RT^2}$$

$$\frac{dP}{P} = \frac{\Delta H}{R} \frac{dT}{T^2}$$

$

\ln \frac{P_2}{P_1} = \frac{\Delta H}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$

假設 ΔH 不隨 T 變太多

Clausius - Clapeyron equation

非常重要的式子，可計算液體在不同溫度之蒸氣壓 (如知道沸點及 ΔH_{vap})
另解 1) \(\mu_g = \mu_i \)
\[
\mu_g^\circ + RT \ln \frac{P}{P^0} = \mu_i^\circ + V_m (P - P^0) \approx \mu_i^\circ
\]
\[
\ln \frac{P}{P^0} = \frac{\mu_i^\circ - \mu_g^\circ}{RT} = -\frac{\Delta G_v^\circ}{RT}, \quad \Delta G_v^\circ = \mu_g^\circ - \mu_i
\]
\[
\frac{\Delta G_v^\circ}{T} = -R \ln \frac{P}{P^0}, \quad \text{但} \quad \frac{\partial \Delta G_v^\circ}{\partial \frac{1}{T}} = \Delta H_v
\]
\[
\text{故} \quad \frac{d \ln P}{d \frac{1}{T}} = -\frac{\Delta H_v}{R}, \quad \ln \frac{P_2}{P_1} = -\frac{\Delta H_v}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)
\]

另解 2) \(A_1 = A_0 \), \(K_v = P_A = P \) 以 \(P \) 表 \(A \) 之蒸汽壓
\[
\frac{\partial \ln K_v}{\partial \frac{1}{T}} = -\frac{\Delta H_v}{R} \quad \text{即} \quad \ln \frac{P_2}{P_1} = -\frac{\Delta H_v}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)
\]

<Note> 固相與氣相之平衡(昇華, 上頁相圖之曲線 AD)和(2)類似, 只是 \(\Delta H \) 係 enthalpy of sublimation(昇華熱) 因 \(\Delta H_{sub} > \Delta H_{vap} \), 故斜率較曲線 AC 大

(3) vapor pressure and external pressure

上面之討論係只考慮系統中只有纯 substance, 沒有其他分子

如沒有其他分子, 則 \(\mu_g^\circ + RT \ln \frac{P}{P^0} = \mu_i^\circ + V_m (P - P^0) \)

因只有 pure substance, 則 \(P_1' = P_1 \)

如果有其他分子, 如果總壓是 \(P_2' \), 蒸汽壓是 \(P_1 \), 則 \(\mu_g^\circ + RT \ln \frac{P_2}{P_1} = \mu_i^\circ + V_m (P_2 - P_0) \)

故 \[
RT \ln \frac{P_2}{P_1} = V_m (P_2' - P_1)
\]

故一般壓力大, vapor pressure 變大

§ 因為高壓(有其他分子)時, liquid 的 \(\mu \) 變得較 gas 大, 故 \(\mu_i' \) 要變小, \(\mu_g \) 要變大才會平衡, 即蒸氣壓變大

例: 298.15 K, \(H_2O \) 蒸氣壓為 23.756 Torr

1 atm 空氣下, \(RT \ln \frac{P_2}{P_1} = 18.05 \cdot (760 - 23.756) \) cm\(^3\) · Torr

\[
= 18.05 \times 10^{-6} \times 736 \times \frac{101325}{760} \text{ Pascal} \cdot m^3
\]

\[
\ln \frac{P_2}{P_1} = \frac{18.05 \times 10^{-6} \times 736 \times 101325}{760} = 7.14 \times 10^{-4}
\]

\(P = 23.756 e^{7.14\times10^{-4}} = 23.773 \) Torr, 增加 0.017 Torr

☆ 假設空氣不溶於水
5.4 The Gibbs Energy and Phase Transitions

(1) 為何 1 atm 下，\(372 \text{ K} \) 時，水較穩定 \(374 \text{ K} \) 時，\(H_2O_{(g)}\) 較穩定 ？

<說明 1>
\[
\left(\frac{\partial G}{\partial T} \right)_p = -S
\]
但 \(S_{vap} > S_{\text{liquid}}\)，故 \(G_{vap}\) 之 slope 負值較大 (高溫時 more negative)

<說明 2>
\[G = H - TS\]
高溫時，此項重要, \(S\) 大的會使 \(G\) more negative
低溫時，此項重要, \(H\) 小的會使 \(G\) more negative

(2) 為何定溫下，加大壓力水蒸氣會液化 ？

<說明 1>
\[
\left(\frac{\partial G}{\partial P} \right)_T = V
\]
\(V_{\text{gas}} > V_{\text{liquid}}\)，故 \(G_{vap}\) 之 slope 大，故高壓時 \(G_{\text{liquid}}\) 較小

<說明 2>
\[G = U + PV - TS\]
低壓時，此項重要, \(S\) 大的會使 \(G\) more negative
高壓時，此項重要, \(V\) 小的會使 \(G\) more negative

(3) vander Waals Equation
\[dG = -SdT + VdP \]
\[= VdP \text{ at constant } T \]
\[\Delta G = \int VdP \]

§ Lever Rule

\[V_T = x_g V_g + x_t V_t = (x_g + x_t) V_T \]
\[\text{故 } x_g (V_g - V_T) = x_t (V_T - V_t) \]
\[x_g = \frac{V_T - V_t}{V_g - V_T}, \quad x_t = \frac{V_g - V_T}{V_g - V_T} \]

(4) stability 之 criteria

① \(\left(\frac{\partial S}{\partial T} \right)_V > 0 \) 即 \(C_V > 0 \)

② \(\left(\frac{\partial P}{\partial V_T} \right) < 0 \) 即 \(\beta > 0 \) 詳見 Callen Chapter 8

Berry Chapter 19

故上節之 vdW 圖中的 D-E-F 部分不 stable
(5) Classification of Phase Transitions

① First-order phase transition
 \(G \) continuous, but at least 1 1st derivative \((S \text{ or } V)\) is discontinuous
 \(C_p \) and \(\beta \) are \(\to \infty \) at phase transition
 因 \(S \) 变 \(T \) 不變, \(V \) 变 \(P \) 不變

② Second-order phase transition
 \(G \) and 1st derivative is continuous, but at least 1 2nd-derivative is discontinuous
 \(C_p \) and \(\beta \) finite break

在 phase transition 時,
 2nd derivative \(\to \infty \)

不多見, 通常在 normal superconducting state 間出現
3. order-disorder (通常不算是 1st or 2nd order)
 如：β-brass.（Zn:Cu ≈ 1:1）742 K 有 order-disorder transition (ordered 時，各 Cu 原子在 Zn cubic cell 中間)
4. lambda transition (He II)

C_p 會 reach ∞ (似 1st order)
但是慢慢上昇的，而非突然上昇（不似 1st order）
5.5 Surface in One-Component System

(1) Surface Tension

定义 $dw = \gamma da$ 把分子从 bulk 帶到 surface 所作之功

表面張力 γ 为一个表面带单位面积的功

假想用電錫圈將液體慢慢拉出，

$$dU = TdS + 2L\gamma dx$$ (兩個surface)

$$dw_{rev} = dU - dq_{rev} = dU - TdS = 2L\gamma dx = F_{rev}dx$$

故 $\gamma = \frac{F_{rev}}{2L}$

γ 是force per unit length exerted by surface,故稱為surface tension

故 $dG = -SdT + VdP + \gamma da$

① constant T, P 下，$dG = \gamma da$，故 minimize a 可減少 G

因此水滴是球形的，2 個水滴樂於合併成 1 個

② $\gamma = \left(\frac{\partial G}{\partial a} \right)_{T,P} = \left(\frac{\partial A}{\partial a} \right)_{T,V}$，可視為單位表面積之量，如同“表面積世界”中的 μ

③ $\left(\frac{\partial \gamma}{\partial T} \right)_V = \left[\frac{\partial}{\partial T} \left(\frac{\partial A}{\partial a} \right) \right]_V = \left[\frac{\partial}{\partial a} \left(\frac{\partial A}{\partial T} \right) \right]_V = \left(\frac{\partial S}{\partial a} \right)_{T,V} = -S_s$ (surface entropy)

即 $S_s = -\left(\frac{\partial \gamma}{\partial T} \right)_V$，$\gamma$ 似 chemical potential

故 $A_s = U_s - TS_s$

即 $\gamma = U_s - TS_s = U_s + T \left(\frac{\partial \gamma}{\partial T} \right)_V$，$U_s = \gamma - T \left(\frac{\partial \gamma}{\partial T} \right)_V$

由 surface tension 導出 surface energy
(2) Bubble Pressure / Surface Pressure

\[V = \frac{4}{3} \pi r^3, \quad dV = 4\pi r^2 \, dr, \]

\[a = 4\pi r^2, \quad da = 8\pi r \, dr, \quad \therefore \, da = \frac{2}{r} \, dV \]

\[dA = -SdT - PdV + \frac{2\gamma}{r} \, dV \]

表面压力与 \(r \) 成反比，与 \(\gamma \) 成正比。

若 \(r \) 增大，\(P_s \) 小，泡泡就破了。

另一种看法，piston 内有一小水滴。

由 piston 内的气层和液体的观点：

\[dw_{rev} = -P^{(g)} \, dV - P^{(l)} \, dV^{(l)} - \gamma \, da \]

（气体不必计入表面张力）

由 piston 之观点：

\[(P^{(l)} - P^{(g)}) \, dV^{(l)} = \gamma \, da = \frac{2\gamma}{r} \, dV \]

即

\[(P^{(l)} - P^{(g)}) = \frac{2\gamma}{r} \]

Laplace equation

例

1 μm 之 droplet at 25°C (\(\gamma = 0.07197 \text{ Nm}^{-2} \))

\[P^{(l)} - P^{(g)} = \frac{2 \times 0.07197}{1 \times 10^{-6}} = 1.44 \times 10^5 \text{ Nm}^{-2} = 1.42 \text{ atm} \]

但 1 mm 之 droplet，\(P^{(l)} - P^{(g)} = 1.42 \times 10^{-3} \text{ atm} \)

例

\[\Delta P = \frac{4\gamma}{r} \quad \text{因有 2 層 surface} \]
物理化學

(3) Capillary Rise 重力=表面張力

1st approximation: \(mg = \rho (ha)g = \frac{2\gamma}{r}a \), 其中\(r \)為毛細管半徑，\(\rho \)為密度

故 \(\gamma = \frac{1}{2} \rho ghr \)

或 \(h = \frac{2\gamma}{\rho gr} \)（隨\(\gamma \)成正比，\(\rho, r \)成反比）

修正：
1. \(\rho \)應是\(\rho_l - \rho_v \)，liquid 與 vapor 的\(\rho \)之差
2. 修正 meniscus

 <1> 假設半球，凸出部分

 \[r \left(\pi r^2 \right) = \frac{1}{2} \pi r^3 = \frac{1}{3} \pi r^3 = \frac{1}{3} ar \]

 \[\gamma = \frac{1}{2} \rho g(h + \frac{1}{3}r) \]

 <2> 不是半球，而是\(\theta \)角

 即 \(\gamma = \left(h + \frac{r \cos \theta}{3} \right) \left(\rho_l - \rho_v \right) \frac{rg}{2} \)
(4) Effect of droplet size on vapor pressure

planar liquid 即：平常一般之 liquid surface

\[dG = -SdT + VdP + \gamma da + \mu^{(p)}dn \]
\[dV = \bar{V}dn \]

對球型液滴，\(da = \frac{2}{r}dV = \frac{2\bar{V}}{r}dn \) 即 \(\mu \) 之修正

\[dG = -SdT + VdP + \left[\mu^{(p)} + \frac{2V\gamma}{r} \right]dn \]

定溫定壓下，\(\mu^{(d)} = \mu^{(p)} + \frac{2V\gamma}{r} \)

\[\mu^{(d)} = \mu^0 + RT \ln \frac{P}{P^0} \]
\[\mu^{(p)} = \mu^0 + RT \ln \frac{P^{(p)}}{P^0} \]

故 \(\mu^0 + RT \ln \frac{P^{(p)}}{P^0} + \frac{2V\gamma}{r} = \mu^0 + RT \ln \frac{P^{(d)}}{P^0} \)

\[\ln \frac{P^{(d)}}{P^{(p)}} = \frac{2V\gamma}{RT} \]

故 \(r \) 愈小 \(\gamma \) 愈大 \(\left\{ \begin{array}{l} P^{(d)} \text{愈大} \\ P^{(p)} \text{愈小} \end{array} \right. \)

例：298.15 K, \(H_2O(1) \), \(P = 23.756 \text{ Torr} \), \(\gamma = 0.07197 \text{ N m}^{-2} \)

但 \(r = 2.54 \times 10^{-8} \text{ m} \) 或 0.025 \(\mu \text{m} \) 時

\[\frac{P^{(d)}}{P^{(p)}} = e^{2.81 \times 10^{-8} \times 0.07197} \]

\[P^{(d)} = 24.756 \text{torr} \]

小 droplet 蒸氣壓較平衡蒸氣壓大

Note:

① 對水中之氣泡(cavity), 蒸氣壓變小

\[\ln \frac{P^{(c)}}{P^{(p)}} = -\frac{2V\gamma}{RT} \]

故可以放沸石避免 superheat liquid (for 平滑, 無塵之 container, 不會有 cavity)

② 為何雨滴會變大？

○ vap. pressure 大 ○ vap. pressure 小

變小 变大

③ 人造雨用 \(AgI/ \text{acetone} \) 噴出 nozzle ,

1 g AgI → \(10^{15} \) droplet, heterogeneous nucleation
5.6 Surface in Multicomponent Systems

1. Density profile near the surface region

(1) 1-component system

![Density profile graph for 1-component system](image)

\[z_0 \text{之決定：使 shaded area 相等} \]

(2) 2-component system

![Density profile graph for 2-component system](image)

如果依上法决定 component 之 \(z_0 \)，
則兩個 component 之 \(z_0 \) 不會相同。
通常用 solvent 為基準來定 \(z_0 \)。

此時定義 surface excess \(n_i^{(\sigma)} \)

\[n_i^{(\sigma)} = n_i - n_i^{(i)} - n_i^{(II)} \]

亦即：\(n_i^{(\sigma)} > 0 \)，accumulation at surface
\(n_i^{(\sigma)} < 0 \)，avoid the surface

2. Thermodynamics

\[dG^{(I)} = -S^{(I)}dT + V^{(I)}dP + \sum \mu_i dn_i^{(I)} \]
\[dG^{(II)} = -S^{(II)}dT + V^{(II)}dP + \sum \mu_i dn_i^{(II)} \]
\[dG = -SdT + VdP + \sum \mu_i dn_i + \gamma da \]

故
\[dG = -SdT + VdP + \sum \mu_i dn_i + \gamma da \]

\[G^{(\sigma)} = \gamma a + \sum \mu_i n_i^{(\sigma)} \]

\[dG^{(\sigma)} = \gamma da + \sum \mu_i dn_i^{(\sigma)} \]

\[\sum \mu_i dn_i^{(\sigma)} = 0 \]

或
\[d\gamma = -\sum \Gamma_i^{(\sigma)}d\mu_i, \text{ 其中 } \Gamma_i^{(\sigma)} = \frac{n_i^{(\sigma)}}{a} \text{ surface concentration} \]

意義：如果增加 component i (即增加\(\mu_i \)) 會減少\(\gamma \)，則\(\Gamma_i^{(\sigma)} \)為正，component i 聚集在 interface，
此即 surfactant 之工作原理。反之，如果增加 component i 使\(\gamma \) 增加，則 component i 會避開 interface

3. \(d\gamma = -\Gamma_2^{(\sigma)}d\mu_2 - \Gamma_1^{(\sigma)}d\mu_1 = -\Gamma_2^{(\sigma)}d\mu_2 \) (solvent 1 之 \(\Gamma_1 = 0 \))

故
\[\Gamma_2^{(\sigma)} = -\left(\frac{\partial \gamma}{\partial \mu_2} \right) \]