Mathematical Statistics

Chen, L.-A.

Chapter 4. Distribution of Function of Random variables

Sample space S: set of possible outcome in an experiment.

Probability set function P:
(1) $P(A) \geq 0, \forall A \subset S$.
(2) $P(S) = 1$.
(3) $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i), i f A_i \cap A_j = \emptyset, \forall i \neq j$.

Random variable X:
$X : S \rightarrow R$
Given $B \subset R, P(X \in B) = P(\{s \in S : X(s) \in B\}) = P(X^{-1}(B))$ where $X^{-1}(B) \subset S$.

X is a discrete random variable if its range
$$X(s) = \{x \in R : \exists s \in S, X(s) = x\}$$
is countable. The probability density/mass function (p.d.f) of X is defined as
$$f(x) = P(X = x), x \in R.$$

Distribution function F:
$$F(x) = P(X \leq x), x \in R.$$

A r.v. is called a continuous r.v. if there exists $f(x) \geq 0$ such that
$$F(x) = \int_{-\infty}^{x} f(t)dt, x \in R.$$

where f is the p.d.f of continuous r.v. X.

1
Let X be a r.v. with p.d.f. f(x). Let g : R → R
Q: What is the p.d.f. of g(x)? and is g(x) a r.v.? (Yes)
Answer:
(a) distribution method:
Suppose that X is a continuous r.v. Let Y = g(X)
The d.f (distribution function) of Y is
\[G(y) = P(Y \leq y) = P(g(X) \leq y) \]
If G is differentiable then the p.d.f. of Y = g(X) is g′(y).
(b) mgf method: (moment generating function)
\[E[e^{tX}] = \left\{ \begin{array}{ll} \sum e^{tx} f(x) & \text{(discrete)} \\ \int_{-\infty}^{\infty} e^{tx} f(x) dx & \text{(continuous)} \end{array} \right. \]
Thm. m.g.f. \(M_x(t) \) and its distribution (p.d.f. or d.f.) forms a 1-1 functions.
ex:
\[M_Y(t) = e^{\frac{1}{2}t} = M_{N(0,1)}(t) \Rightarrow Y \sim N(0,1) \]
Let \(X_1, \ldots, X_n \) be random variables.
If they are discrete, the joint p.d.f. of \(X_1, \ldots, X_n \) is
\[f(x_1, \ldots, x_n) = P(X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n), \forall \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n \]
If \(X_1, \ldots, X_n \) are continuous r.v.’s, there exists \(f \) such that
\[F(x_1, \ldots, x_n) = \int_{-\infty}^{x_n} \ldots \int_{-\infty}^{x_1} f(t_1, \ldots, t_n) dt_1 \ldots dt_n, \text{for } \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n \]
We call \(f \) the joint p.d.f. of \(X_1, \ldots, X_n \).
If \(X \) is continuous, then
\[F(x) = \int_{-\infty}^{x} f(t) dt \text{ and } P(X = x) = \int_{x}^{x} f(t) dt = 0, \forall x \in \mathbb{R}. \]
Marginal p.d.f.’s:
Discrete:

\[f_{X_i}(x) = P(X_i = x) = \sum_{x_n} \cdots \sum_{x_{i+1}} \sum_{x_{i-1}} \sum_{x_1} f(x_1, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_n) \]

Continuous:

\[f_{X_i}(x) = \int_{-\infty}^{x} \cdots \int_{-\infty}^{x} \cdots \int_{-\infty}^{x} f(x_1, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_n) dx_1 \cdots dx_{i-1} dx_{i+1} \cdots dx_n \]

Events A and B are independent if \(P(A \cap B) = P(A)P(B) \).
Q: If \(A \cap B = \emptyset \), are A and B independent?
A: In general, they are not.

Let X and Y be r.v.’s with joint p.d.f. \(f(x, y) \) and marginal p.d.f. \(f_X(x) \) and \(f_Y(y) \). We say that X and Y are independent if

\[f(x, y) = f_X(x)f_Y(y), \forall \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \]

Random variables X and Y are identically distributed (i.d.) if marginal p.d.f.’s f and g satisfy \(f = g \) or d.f.’s F and G satisfy \(F = G \).

We say that X and Y are iid random variables if they are independent and identically distributed.

Transformation of r.v.’s (discrete case)
Univariate: \(Y = g(X) \), p.d.f. of Y is

\[g(y) = P(Y = y) = P(g(x) = y) = P(\{x \in \text{Range of } X : g(x) = y\}) = \sum_{\{x:g(x)=y\}} f(x) \]

For random variables \(X_1, \ldots, X_n \) with joint p.d.f. \(f(x_1, \ldots, x_n) \), define transformations

\[Y_1 = g_1(X_1, \ldots, X_n), \ldots, Y_m = g_m(X_1, \ldots, X_n). \]

The joint p.d.f. of \(Y_1, \ldots, Y_m \) is
\[g(y_1, \ldots, y_m) = P(Y_1 = y_1, \ldots, Y_m = y_m) \\
= P(\{ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} : g_1(x_1, \ldots, x_n) = y_1, \ldots, g_m(x_1, \ldots, x_n) = y_m \}) \\
= \sum \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \{ : g_1(x_1, \ldots, x_n) = y_1, \ldots, g_m(x_1, \ldots, x_n) = y_m \} \sum f(x_1, \ldots, x_n) \\
\]

Example: joint p.d.f. of \(X_1, X_2, X_3 \) is
\[
\begin{array}{c|cccccc}
(x_1, x_2, x_3) & (0, 0, 0) & (0, 0, 1) & (0, 1, 1) & (1, 0, 1) & (1, 1, 0) & (1, 1, 1) \\
f(x_1, x_2, x_3) & \frac{1}{8} & \frac{3}{8} & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} \\
\end{array}
\]
\[Y_1 = X_1 + X_2 + X_3, Y_2 = |X_3 - X_2| \]
Space of \((Y_1, Y_2)\) is \{(0, 0), (1, 1), (2, 0), (2, 1), (3, 0)\}.
Joint p.d.f. of \(Y_1 \) and \(Y_2 \) is
\[
\begin{array}{c|cccc}
(y_1, y_2) & (0, 0) & (1, 1) & (2, 0) & (2, 1) & (3, 0) \\
g(y_1, y_2) & \frac{1}{8} & \frac{3}{8} & \frac{1}{8} & \frac{2}{8} & \frac{1}{8} \\
\end{array}
\]
Continuous one-to-one transformations:
Let \(X \) be a continuous r.v. with joint p.d.f. \(f(x) \) and range \(A = X(s) \).
Consider \(Y = g(x) \), a differentiable function. We want p.d.f. of \(Y \).

Thm. If \(g \) is 1-1 transformation, then the p.d.f. of \(Y \) is
\[f_Y(y) = \begin{cases}
 f_X(g^{-1}(y)) \left| \frac{dg^{-1}(y)}{dy} \right| & y \in g(A) \\
 0 & \text{otherwise.}
\end{cases} \]

Proof. The d.f. of \(Y \) is
\[F_Y(y) = P(Y \leq y) = P(g(X) \leq y) \]
(a) If \(g \) is \(\nearrow \), \(g^{-1} \) is also \(\nearrow \), \(\left(\frac{dg^{-1}}{dy} > 0 \right) \)
\[F_Y(y) = P(X \leq g^{-1}(y)) = \int_{-\infty}^{g^{-1}(y)} f_X(x) dx \]
\[f_Y(y) = D_y \int_{-\infty}^{g^{-1}(y)} f_X(x) \, dx \]
\[= f_X(g^{-1}(y)) \frac{dg^{-1}(y)}{dy} \]
\[= f_X(g^{-1}(y)) \left| \frac{dg^{-1}(y)}{dy} \right| \]

(b) If \(g \) is \(\searrow \), \(g^{-1} \) is also \(\searrow \). \(\left(\frac{dg^{-1}}{dy} < 0 \right) \)

\[F_Y(y) = P(X \geq g^{-1}(y)) = \int_{g^{-1}(y)}^{\infty} f_X(x) \, dx = 1 - \int_{-\infty}^{g^{-1}(y)} f_X(x) \, dx \]

\[\Rightarrow \text{p.d.f. of } Y \text{ is} \]
\[f_Y(y) = D_y(1 - \int_{-\infty}^{g^{-1}(y)} f_X(x) \, dx) \]
\[= -f_X(g^{-1}(y)) \frac{dg^{-1}(y)}{dy} \]
\[= f_X(g^{-1}(y)) \left| \frac{dg^{-1}(y)}{dy} \right| \]

Example: \(X \sim U(0, 1), Y = -2 \ln(x) = g(x) \)

sol: p.d.f. of \(X \) is
\[f_X(x) = \begin{cases}
1 & \text{if } 0 < x < 1 \\
0 & \text{elsewhere.}
\end{cases} \]

\(A = (0, 1), g(A) = (0, \infty) \),

\[x = e^{-\frac{y}{2}} = g^{-1}(y), \frac{dx}{dy} = -\frac{1}{2}e^{-\frac{y}{2}} \]

p.d.f. of \(Y \) is
\[f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dy}{dx} \right| = \frac{1}{2}e^{-\frac{y}{2}}, y > 0 \]

\((X \sim U(a, b) \text{ if } f_X(x) = \begin{cases}
\frac{1}{b-a} & \text{if } a < x < b \\
0 & \text{elsewhere.}
\end{cases} \)
\[Y \sim \chi^2(2) \]

\[X \sim \chi^2(r) \text{ if } f_X(x) = \frac{1}{\Gamma\left(\frac{r}{2}\right)2^{\frac{r}{2}}}x^{\frac{r}{2}-1}e^{-\frac{x}{2}}, x > 0 \]

Continuous n-r.v.-to-m-r.v., \(n > m \), case:

\[
\begin{pmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{pmatrix}
\rightarrow
\begin{cases}
 Y_1 = g_1(X_1, \ldots, X_n) \\
 \vdots \\
 Y_m = g_m(X_1, \ldots, X_n)
\end{cases}
\]

Q: What are the marginal p.d.f. of \(Y_1, \ldots, Y_m \)

A: We need to define \(Y_{m+1} = g_{m+1}(X_1, \ldots, X_n), \ldots, Y_n = g_n(X_1, \ldots, X_n) \)

such that \(\begin{pmatrix} g_1 \\ \vdots \\ g_n \end{pmatrix} \) is 1-1 from \(\mathbb{R}^n \) to \(\mathbb{R}^m \).

Theory for change variables:

\[
P(\begin{pmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{pmatrix} \in A) = \int \cdots \int f_{X_1, \ldots, X_n}(x_1, \ldots, x_n)dx_1 \cdots dx_n
\]

Let \(y_1 = g_1(x_1, \ldots, x_n), \ldots, y_n = g_n(x_1, \ldots, x_n) \) be a 1-1 function with

inverse \(x_1 = w_1(y_1, \ldots, y_n), \ldots, x_n = w_n(y_1, \ldots, y_n) \)

and Jacobian

\[
J = \begin{vmatrix}
 \frac{\partial x_1}{\partial y_1} & \cdots & \frac{\partial x_1}{\partial y_n} \\
 \vdots & \ddots & \vdots \\
 \frac{\partial x_n}{\partial y_1} & \cdots & \frac{\partial x_n}{\partial y_n}
\end{vmatrix}
\]

Then

\[
\int \cdots \int f_{X_1, \ldots, X_n}(x_1, \ldots, x_n)dx_1 \cdots dx_n
\]

\[= \int \cdots \int f_{X_1, \ldots, X_n}(w_1(y_1, \ldots, y_n), \ldots, w_n(y_1, \ldots, y_n))|J|dy_1 \cdots dy_n\]

Hence, joint p.d.f. of \(Y_1, \ldots, Y_n \) is

\[f_{Y_1, \ldots, Y_n}(y_1, \ldots, y_n) = f_{X_1, \ldots, X_n}(w_1, \ldots, w_n)|J| \]
Theorem. Suppose that X_1 and X_2 are two r.v.'s with continuous joint p.d.f. f_{X_1, X_2} and sample space A.
If $Y_1 = g_1(X_1, X_2)$, $Y_2 = g_2(X_1, X_2)$ forms a $1 - 1$ transformation inverse function

$$
\begin{pmatrix}
X_1 \\
X_2
\end{pmatrix} = \begin{pmatrix}
W_1(Y_1, Y_2) \\
W_2(Y_1, Y_2)
\end{pmatrix}
$$

and Jacobian $J = \left| \begin{array}{cc}
\frac{\partial X_1}{\partial Y_1} & \frac{\partial X_1}{\partial Y_2} \\
\frac{\partial X_2}{\partial Y_1} & \frac{\partial X_2}{\partial Y_2}
\end{array} \right|$

the joint p.d.f. of Y_1, Y_2 is

$$
f_{Y_1, Y_2}(y_1, y_2) = f_{X_1, X_2}(w_1(y_1, y_2), w_2(y_1, y_2))|J|, \quad \left(\begin{array}{c}
y_1 \\
y_2
\end{array} \right) \in \left(\begin{array}{c}
g_1 \\
g_2
\end{array} \right)(A).
$$

Steps:
(a) joint p.d.f. of X_1, X_2, space A.
(b) check if it is $1 - 1$ transformation.
Inverse function $X_1 = w_1(Y_1, Y_2), X_2 = w_2(Y_1, Y_2)$
(c) Range of $(Y_1, Y_2) = (g_1, g_2)(A)$

Example: For $X_1, X_2 \sim U(0, 1)$, let $Y_1 = X_1 + X_2, Y_2 = X_1 - X_2$.
Want marginal p.d.f. of Y_1, Y_2
Sol: joint p.d.f. of X_1, X_2 is

$$
f_{X_1, X_2}(x_1, x_2) = \begin{cases}
1 & \text{if } 0 < x_1 < 1, 0 < x_2 < 1 \\
0 & \text{elsewhere.}
\end{cases}
$$

$$
A = \left\{ \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} : 0 < x_1 < 1, 0 < x_2 < 1 \right\}
$$

Given y_1, y_2, solve $y_1 = x_1 + x_2, y_2 = x_1 - x_2$.

$$
\Rightarrow x_1 = \frac{y_1 + y_2}{2} = w_1(y_1, y_2), x_2 = \frac{y_1 - y_2}{2} = w_2(y_1, y_2)
$$

$(1 - 1$ transformation)

Jacobian is

$$
J = \left| \begin{array}{cc}
\frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\
\frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2}
\end{array} \right| = \left| \begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array} \right| = -\frac{1}{4} - \frac{1}{4} = -\frac{1}{2}
$$

The joint p.d.f. of Y_1, Y_2 is

$$
f_{Y_1, Y_2}(y_1, y_2) = f_{X_1, X_2}(w_1, w_2)|J|, \quad \left(\begin{array}{c}
y_1 \\
y_2
\end{array} \right) \in B
$$
Marginal p.d.f. of Y_1, Y_2 are

$$f_{Y_1}(y_1) = \begin{cases} \int_{y_1}^{y_1 + \frac{1}{2}} dy_2 = y_1, & 0 < y_1 < 1 \\ \int_{y_1 - \frac{1}{2}}^{1 - y_1} dy_2 = 1 - y_1, & 1 < y_1 < 2 \\ 0, & \text{elsewhere.} \end{cases}$$

$$f_{Y_2}(y_2) = \begin{cases} \int_{-y_2 + \frac{1}{2}}^{y_2 + \frac{1}{2}} dy_1 = y_2 + 1, & -1 < y_2 < 0 \\ \int_{y_2 - \frac{1}{2}}^{1 - y_2} dy_1 = 1 - y_2, & 0 < y_2 < 1 \\ 0, & \text{elsewhere.} \end{cases}$$

Def. If a sequence of r.v.’s X_1, \ldots, X_n are independent and identically distributed (i.i.d.), then they are called a random sample.

If X_1, \ldots, X_n is a random sample from a distribution with p.d.f. f_0, then the joint p.d.f. of X_1, \ldots, X_n is

$$f(x_1, \ldots, x_n) = \prod_{i=1}^{n} f_0(x_i), \quad \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$

Def. Any function $g(X_1, \ldots, X_n)$ of a random sample X_1, \ldots, X_n which is not dependent on a parameter θ is called a statistic.

Note: If X is a random sample with p.d.f. $f(x, \theta)$, where θ is an unknown constant, then θ is called a parameter.

For example, $N(\mu, \sigma^2): \mu, \sigma^2$ are parameters.

$\text{Poisson}(\lambda): \lambda$ is a parameter.

Example of statistics:

X_1, \ldots, X_n are iid r.v.’s $\Rightarrow \bar{X}$ and S^2 are statistics.

Note: If X_1, \ldots, X_n are r.v.’s, the m.g.f of X_1, \ldots, X_n is

$$M_{X_1,\ldots,X_n}(t_1,\ldots,t_n) = \text{E}(e^{t_1X_1+\cdots+t_nX_n})$$

m.g.f

$$M_x(t) = \text{E}(e^{tx}) = \int e^{tx} f(x) dx$$

$$\Rightarrow D_t M_x(t) = D_t \text{E}(e^{tx}) = D_t \int e^{tx} f(x) dx = \int D_t e^{tx} f(x) dx$$
Lemma. X_1 and X_2 are independent if and only if

$$M_{X_1, X_2}(t_1, t_2) = M_{X_1}(t_1) M_{X_2}(t_2), \forall t_1, t_2.$$

Proof. \Rightarrow If X_1, X_2 are independent,

$$M_{X_1, X_2}(t_1, t_2) = E(e^{t_1 X_1 + t_2 X_2})$$

$$= \int \int e^{t_1 x_1 + t_2 x_2} f(x_1, x_2) dx_1 dx_2$$

$$= \int e^{t_1 x_1} f_{X_1}(x_1) dx_1 \int e^{t_2 x_2} f_{X_2}(x_2) dx_2$$

$$= E(e^{t_1 X_1}) E(e^{t_2 X_2})$$

$$= M_{X_1}(t_1) M_{X_2}(t_2)$$

\Leftarrow \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm}

$$M_{X_1, X_2}(t_1, t_2) = E(e^{t_1 X_1 + t_2 X_2}) = \int \int e^{t_1 x_1 + t_2 x_2} f(x_1, x_2) dx_1 dx_2$$

$$M_{X_1}(t_1) M_{X_2}(t_2) = E(e^{t_1 X_1}) E(e^{t_2 X_2})$$

$$= \int e^{t_1 x_1} f_{X_1}(x_1) dx_1 \int e^{t_2 x_2} f_{X_2}(x_2) dx_2$$

$$= \int e^{t_1 x_1 + t_2 x_2} f(x_1, x_2) dx_1 dx_2$$

With $1 - 1$ correspondence between m.g.f and p.d.f,
then $f(x_1, x_2) = f_1(x_1) f_2(x_2), \forall x_1, x_2$

$\Rightarrow X_1, X_2$ are independent. \hfill \Box$

X and Y are independent, denote by $X \perp Y$.

$$\begin{cases}
X \sim N(\mu, \sigma^2) & , M_x(t) = e^{\mu t + \frac{\sigma^2 t^2}{2}}, \forall t \in R \\
X \sim \text{Gamma}(\alpha, \beta) & , M_x(t) = (1 - \beta t)^{-\alpha}, t < \frac{1}{\beta} \\
X \sim b(n, p) & , M_x(t) = (1 - p + p e^t)^n, \forall t \in R \\
X \sim \text{Poisson}(\lambda) & , M_x(t) = e^{\lambda (e^t - 1)}, \forall t \in R
\end{cases}$$

Note :
(a) If \((X_1, \ldots, X_n)\) and \((Y_1, \ldots, Y_m)\) are independent, then \(g(X_1, \ldots, X_n)\) and \(h(Y_1, \ldots, Y_m)\) are also independent.

(b) If \(X, Y\) are independent, then
\[
E[g(X)h(Y)] = E[g(X)]E[h(Y)].
\]

Thm. If \((X_1, \ldots, X_n)\) is a random sample from \(N(\mu, \sigma^2)\), then

(a) \(\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)\)

(b) \(\overline{X}\) and \(S^2\) are independent.

(c) \(\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)\)

Proof. (a) m.g.f. of \(\overline{X}\) is
\[
M_{\overline{X}}(t) = E(e^{t\overline{X}}) = E(e^{t \frac{1}{n} \sum_{i=1}^{n} X_i})
= E(e^{\frac{t}{n} X_1} e^{\frac{t}{n} X_2} \cdots e^{\frac{t}{n} X_n})
= E(e^{\frac{t}{n} X_1})E(e^{\frac{t}{n} X_2})E(e^{\frac{t}{n} X_n})
= M_{X_1}(\frac{t}{n})M_{X_2}(\frac{t}{n}) \cdots M_{X_n}(\frac{t}{n})
= (e^{\mu \frac{t}{n} + \frac{\sigma^2}{2n} \frac{t^2}{2}})^n
= e^{\mu t + \frac{\sigma^2}{2n} t^2}
\]

\(\Rightarrow \overline{X} \sim (\mu, \frac{\sigma^2}{n})\)

(b) First we want to show that \(\overline{X}\) and \((X_1 - \overline{X}, X_2 - \overline{X}, \ldots, X_n - \overline{X})\) are
independent. Joint m.g.f. of X and $(X_1 - \bar{X}, X_2 - \bar{X}, \ldots, X_n - \bar{X})$ is

$$M_{X_1 - \bar{X}, X_2 - \bar{X}, \ldots, X_n - \bar{X}} (t, t_1, \ldots, t_n) = E[e^{tX_1 + t_1(X_1 - \bar{X}) + \ldots + t_n(X_n - \bar{X})}]$$

$$= E[e^{\frac{t}{n} \sum_{i=1}^{n} X_i + \sum_{i=1}^{n} t_i (X_i - \bar{X})}]$$

$$= E[e^{\sum_{i=1}^{n} \left(\frac{t}{n} + t_i \right) X_i}], \bar{t} = \frac{1}{n} \sum_{i=1}^{n} t_i$$

$$= E\left[e^{\sum_{i=1}^{n} \left(\frac{t}{n} + t_i \right) X_i} \right]$$

$$= E\left[\prod_{i=1}^{n} e^{\frac{t}{n} + t_i X_i} \right]$$

$$= \prod_{i=1}^{n} e^{e^{\frac{t}{n} + t_i} + \frac{\sigma^2}{2} \frac{t^2}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2}$$

$$= e^{e^{\frac{t}{n} + \frac{\sigma^2}{2} \sum_{i=1}^{n} (X_i - \bar{X})^2}}$$

$$= M_{X} (t) M_{X_1 - \bar{X}, X_2 - \bar{X}, \ldots, X_n - \bar{X}} (t_1, \ldots, t_n)$$

$\Rightarrow \bar{X}$ and $(X_1 - \bar{X}, X_2 - \bar{X}, \ldots, X_n - \bar{X})$ are independent.

$\Rightarrow \bar{X}$ and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$ are independent.

(c)

1. $Z \sim N(0, 1) \Rightarrow Z^2 \sim \chi^2(1)$
2. $X \sim \chi^2(r_1)$ and $Y \sim \chi^2(r_2)$ are independent. $\Rightarrow X + Y \sim \chi^2(r_1 + r_2)$

Proof. m.g.f. of $X + Y$ is

$$M_{X+Y}(t) = E(e^{t(X+Y)}) = E(e^{tX}e^{tY}) = E(e^{tX})E(e^{tY}) = M_X(t)M_Y(t)$$

$$= (1 - 2t)^{-\frac{r_1}{2}} (1 - 2t)^{-\frac{r_2}{2}} = (1 - 2t)^{-\frac{r_1 + r_2}{2}}$$

$\Rightarrow X + Y \sim \chi^2(r_1 + r_2)$

3. $(X_1, \ldots, X_n) \overset{iid}{\sim} N(\mu, \sigma)$

$$\frac{X_1 - \mu}{\sigma}, \frac{X_2 - \mu}{\sigma}, \ldots, \frac{X_n - \mu}{\sigma} \overset{iid}{\sim} N(0, 1)$$
\[
\frac{(X_1 - \mu)^2}{\sigma^2}, \frac{(X_2 - \mu)^2}{\sigma^2}, \ldots, \frac{(X_n - \mu)^2}{\sigma^2} \overset{iid}{\sim} \chi^2(1)
\]

\[
\sum_{i=1}^{n} \frac{(X_i - \mu)^2}{\sigma^2} = \sum_{i=1}^{n} (X_i - \mu)^2 \sim \chi^2(n)
\]

\[
\frac{(n - 1)s^2}{\sigma^2} = \sum_{i=1}^{n} \frac{(X_i - X)^2}{\sigma^2} \sim \chi^2(n - 1)
\]

\[
(1 - 2t)^{-\frac{a}{2}} = M_{\frac{\sum(X_i - \mu)^2}{\sigma^2}}(t) = \mathbb{E}(e^{t\frac{\sum(X_i - \mu)^2}{\sigma^2}})
\]

\[
= \mathbb{E}(e^{t\frac{\sum(X_i - X + X - \mu)^2}{\sigma^2}}) = \mathbb{E}(e^{t\frac{\sum(X_i - X)^2 + n(X - \mu)^2}{\sigma^2}})
\]

\[
= \mathbb{E}(e^{t\frac{(n-1)s^2}{\sigma^2}} e^{t\frac{(X - \mu)^2}{\sigma^2/n}})
\]

\[
= \mathbb{E}(e^{t\frac{(n-1)s^2}{\sigma^2}}) \mathbb{E}(e^{t\frac{(X - \mu)^2}{\sigma^2/n}})
\]

\[
= M_{\frac{(n-1)s^2}{\sigma^2}}(t) M_{\frac{(X - \mu)^2}{\sigma^2/n}}(t)
\]

\[
= M_{\frac{(n-1)s^2}{\sigma^2}}(t)(1 - 2t)^{-\frac{1}{2}}
\]

\[
\Rightarrow M_{\frac{(n-1)s^2}{\sigma^2}}(t) = (1 - 2t)^{-\frac{n-1}{2}} \Rightarrow \frac{(n - 1)s^2}{\sigma^2} \sim \chi^2(n - 1)
\]
Chapter 3. Statistical Inference – Point Estimation

Problem in statistics:
A random variables X with p.d.f. of the form $f(x, \theta)$ where function f is known but parameter θ is unknown. We want to gain knowledge about θ.

What we have for inference:
There is a random sample X_1,\ldots,X_n from $f(x, \theta)$.

Statistical inferences

- **Estimation**
 - Point estimation: $\hat{\theta} = \hat{\theta}(X_1,\ldots,X_n)$
 - Interval estimation:
 - Find statistics $T_1 = t_1(X_1,\ldots,X_n), T_2 = t_2(X_1,\ldots,X_n)$ such that $1 - \alpha = P(T_1 \leq \theta \leq T_2)$
- **Hypothesis testing**: $H_0 : \theta = \theta_0$ or $H_0 : \theta \geq \theta_0$.
 - Want to find a rule to decide if we accept or reject H_0.

Def. We call a statistic $\hat{\theta} = \hat{\theta}(X_1,\ldots,X_n)$ an estimator of parameter θ if it is used to estimate θ. If $X_1 = x_1,\ldots,X_n = x_n$ are observed, then $\hat{\theta} = \hat{\theta}(x_1,\ldots,x_n)$ is called an estimate of θ.

Two problems are concerned in estimation of θ:

(a) How can we evaluate an estimator $\hat{\theta}$ for its use in estimation of θ? Need criterion for this estimation.

(b) Are there general rules in deriving estimators? We will introduce two methods for deriving estimator of θ.

Def. We call an estimator θ **unbiased** for θ if it satisfies

$$E_{\theta}(\hat{\theta}(X_1,\ldots,X_n)) = \theta, \forall \theta.$$

$$E_{\theta}(\hat{\theta}(X_1,\ldots,X_n)) = \left\{ \begin{array}{ll} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \hat{\theta}(x_1,\ldots,x_n)f(x_1,\ldots,x_n,\theta)dx_1 \cdots dx_n \\ \int_{-\infty}^{\infty} \theta^* f_{\hat{\theta}}(\theta^*)d\theta^* \end{array} \right\} \text{ where } \hat{\theta} = \hat{\theta}(X_1,\ldots,X_n) \text{ is a r.v. with pdf } f_{\hat{\theta}}(\theta^*)$$

Def. If $E_{\theta}(\hat{\theta}(X_1,\ldots,X_n)) \neq \theta$ for some θ, we said that $\hat{\theta}$ is a **biased** estimator.
Example: \(X_1, \ldots, X_n \sim iid N(\mu, \sigma^2)\), Suppose that our interest is \(\mu, X_1, \ldots, X_n\), \(E_{\mu}(X_1) = \mu\), is unbiased for \(\mu\),
\[
\frac{1}{2}(X_1 + X_2), E(\frac{X_1 + X_2}{2}) = \mu, \text{ is unbiased for } \mu,
\]
\[
\overline{X}, E_{\mu}(\overline{X}) = \mu, \text{ is unbiased for } \mu,
\]
\[\triangleright a_n \xrightarrow{n \to \infty} a, \text{ if } \forall \epsilon > 0, \text{ there exists } N > 0 \text{ such that } |a_n - a| < \epsilon \text{ if } n \geq N.\]

\(\{X_n\}\) is a sequence of r.v.'s. How can we define \(X_n \to X\) as \(n \to \infty\)?

Def. We say that \(X_n \text{ converges to } X\), a r.v. or a constant, in probability if for \(\epsilon > 0\),
\[
P(|X_n - X| > \epsilon) \to 0, \text{ as } n \to \infty.
\]

In this case, we denote \(X_n \xrightarrow{P} X\).

Thm. If \(E(X_n) = a\) or \(E(X_n) \to a\) and \(\text{Var}(X_n) \to 0\), then \(X_n \xrightarrow{P} a\).

Proof. \[
E[(X_n - a)^2] = E[(X_n - E(X_n) + E(X_n) - a)^2]
= E[(X_n - E(X_n))^2] + E[(E(X_n) - a)^2] + 2E[(X_n - E(X_n))(E(X_n) - a)]
= \text{Var}(X_n) + E((X_n - a)^2)
\]

Chebyshev’s Inequality:
\[
P(|X_n - X| \geq \epsilon) \leq \frac{E(X_n - X)^2}{\epsilon^2} \text{ or } P(|X_n - \mu| \geq k\sigma) \leq \frac{1}{k^2}
\]

For \(\epsilon > 0\),
\[
0 \leq P(|X_n - a| > \epsilon) = P((X_n - a)^2 > \epsilon^2)
\leq \frac{E(X_n - a)^2}{\epsilon^2} = \frac{\text{Var}(X_n) + (E(X_n) - a)^2}{\epsilon^2} \to 0 \text{ as } n \to \infty.
\]
\[
\Rightarrow P(|X_n - a| > \epsilon) \to 0, \text{ as } n \to \infty. \Rightarrow X_n \xrightarrow{P} a.
\]

Thm. Weak Law of Large Numbers (WLLN)
If \(X_1, \ldots, X_n\) is a random sample with mean \(\mu\) and finite variance \(\sigma^2\), then \(\overline{X} \xrightarrow{P} \mu\).
Proof.

\[E(\bar{X}) = \mu, \text{Var}(\bar{X}) = \frac{\sigma^2}{n} \rightarrow 0 \text{ as } n \rightarrow \infty. \Rightarrow \bar{X} \xrightarrow{P} \mu. \]

\[\square \]

Def. We say that \(\hat{\theta} \) is a **consistent** estimator of \(\theta \) if \(\hat{\theta} \xrightarrow{P} \theta \).

Example: \(X_1, \ldots, X_n \) is a random sample with mean \(\mu \) and finite variance \(\sigma^2 \). Is \(\bar{X} \) a consistent estimator of \(\mu \)?

\[E(X_1) = \mu, \text{ } \text{ } \text{ } X_1 \text{ is unbiased for } \mu. \]

\[\text{Let } \epsilon > 0, \]

\[P(|X_1 - \mu| > \epsilon) = 1 - P(|X_1 - \mu| \leq \epsilon) = 1 - P(\mu - \epsilon \leq X_1 \leq \mu + \epsilon) \]

\[= 1 - \int_{\mu-\epsilon}^{\mu+\epsilon} f_X(x) dx > 0, \rightarrow 0 \text{ as } n \rightarrow \infty. \]

\(\Rightarrow \bar{X} \) is not a consistent estimator of \(\mu \)

\[E(\bar{X}) = \mu, \text{Var}(\bar{X}) = \frac{\sigma^2}{n} \rightarrow 0 \text{ as } n \rightarrow \infty. \]

\[\Rightarrow \bar{X} \xrightarrow{P} \mu. \]

\[\Rightarrow \bar{X} \text{ is a consistent estimator of } \mu. \]

\[\triangleq \text{Unbiasedness and consistency are two basic conditions for good estimator.} \]

Moments :

Let \(X \) be a random variable having a p.d.f. \(f(x, \theta) \), the population \(k \text{th} \) moment is defined by

\[E_\theta(X^k) = \left\{ \begin{array}{ll}
\sum_{x} x^k f(x, \theta) & , \text{discrete} \\
\int_{-\infty}^{\infty} x^k f(x, \theta) dx & , \text{continuous}
\end{array} \right. \]

The sample \(k \text{th} \) moment is defined by \(\frac{1}{n} \sum_{i=1}^{n} X_i^k \).

Note :

\[E\left(\frac{1}{n} \sum_{i=1}^{n} X_i^k \right) = \frac{1}{n} \sum_{i=1}^{n} E(X_i^k) = \frac{1}{n} \sum_{i=1}^{n} E_\theta(X^k) = E_\theta(X^k) \]
⇒ Sample k_{th} moment is unbiased for population k_{th} moment.

\[
\text{Var}\left(\frac{1}{n} \sum_{i=1}^{n} X_i^k\right) = \frac{1}{n^2} \text{Var}\left(\sum_{i=1}^{n} X_i^k\right) = \frac{1}{n^2} \sum_{i=1}^{n} \text{Var}(X_i^k) = \frac{1}{n} \text{Var}(X^k) \to 0 \text{ as } n \to \infty.
\]

⇒ $\frac{1}{n} \sum_{i=1}^{n} X_i^k \xrightarrow{P} \text{E}_\theta(X^k)$.

⇒ $\frac{1}{n} \sum_{i=1}^{n} X_i^k$ is a consistent estimator of $\text{E}_\theta(X^k)$.

Let X_1, \ldots, X_n be a random sample with mean μ and variance σ^2. The sample variance is defined by $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$ Want to show that S^2 is unbiased for σ^2.

\[
\text{E}(X) = \text{E}[(X - \mu)^2] = \text{E}[X^2 - 2\mu X + \mu^2] = \text{E}(X^2) - \mu^2
\]

⇒ $\text{E}(X^2) = \text{Var}(X) + \mu^2 = \text{Var}(X) + (\text{E}(X))^2$

\[
\text{E}(\overline{X}) = \mu, \text{Var}(\overline{X}) = \frac{\sigma^2}{n}
\]

\[
\text{E}(S^2) = \text{E}\left(\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2\right) = \frac{1}{n-1} \text{E}\left(\sum_{i=1}^{n} X_i^2 - 2\overline{X} \sum_{i=1}^{n} X_i + n\overline{X}^2\right)
\]

\[
= \frac{1}{n-1} \text{E}\left(\sum_{i=1}^{n} X_i^2 - n\overline{X}^2\right) = \frac{1}{n-1} \left[\sum_{i=1}^{n} \text{E}(X_i^2) - n\text{E}(\overline{X}^2)\right]
\]

\[
= \frac{1}{n-1} \left[n\sigma^2 + n\mu^2 - n\left(\frac{\sigma^2}{n} + \mu^2\right)\right] = \frac{1}{n-1} (n-1)\sigma^2 = \sigma^2
\]

⇒ $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$ is unbiased for σ^2.

\[
S^2 = \frac{1}{n-1} \left[\sum_{i=1}^{n} X_i^2 - n\overline{X}^2\right] = \frac{n}{n-1} \left[\frac{1}{n} \sum_{i=1}^{n} X_i^2 - \overline{X}^2\right] \xrightarrow{P} \text{E}(X^2) - \mu^2 = \sigma^2 + \mu^2 - \mu^2 = \sigma^2
\]

X_1, \ldots, X_n are iid with mean μ and variance σ^2

X_1^2, \ldots, X_n^2 are iid r.v.'s with mean $\text{E}(X^2) = \mu^2 + \sigma^2$

By WLLN, $\frac{1}{n} \sum_{i=1}^{n} X_i^2 \xrightarrow{P} \text{E}(X^2) = \mu^2 + \sigma^2$

⇒ $S^2 \xrightarrow{P} \sigma^2$
Def. Let \(X_1, \ldots, X_n \) be a random sample from a distribution with p.d.f. \(f(x, \theta) \)

(a) If \(\theta \) is univariate, the method of moment estimator \(\hat{\theta} \) solve \(\theta \) for \(\bar{X} = E_{\theta}(X) \)

(b) If \(\theta = (\theta_1, \theta_2) \) is bivariate, the method of moment estimator \((\hat{\theta}_1, \hat{\theta}_2) \) solves \((\theta_1, \theta_2) \) for

\[
\bar{X} = E_{\theta_1, \theta_2}(X), \frac{1}{n} \sum_{i=1}^{n} X_i^2 = E_{\theta_1, \theta_2}(X^2)
\]

(c) If \(\theta = (\theta_1, \ldots, \theta_k) \) is k-variate, the method of moment estimator \((\hat{\theta}_1, \ldots, \hat{\theta}_k) \) solves \(\theta_1, \ldots, \theta_k \) for

\[
\frac{1}{n} \sum_{i=1}^{n} X_i^j = E_{\theta_1, \ldots, \theta_k}(X^j), j = 1, \ldots, k
\]

Example:

(a) \(X_1, \ldots, X_n \overset{iid}{\sim} \text{Bernoulli}(p) \)

Let \(\bar{X} = E_p(X) = p \)

\(\Rightarrow \) The method of moment estimator of \(p \) is \(\hat{p} = \bar{X} \)

By WLLN, \(\hat{p} = \bar{X} \overset{p}{\rightarrow} E_p(X) = p \Rightarrow \hat{p} \) is consistent for \(p \).

\(E(\hat{p}) = E(\bar{X}) = E(X) = p \Rightarrow \hat{p} \) is unbiased for \(p \).

(b) Let \(X_1, \ldots, X_n \) be a random sample from \(\text{Poisson}(\lambda) \)

Let \(\bar{X} = E_\lambda(X) = \lambda \)

\(\Rightarrow \) The method of moment estimator of \(\lambda \) is \(\hat{\lambda} = \bar{X} \)

\(E(\hat{\lambda}) = E(\bar{X}) = \lambda \Rightarrow \hat{\lambda} \) is unbiased for \(\lambda \).

\(\hat{\lambda} = \bar{X} \overset{p}{\rightarrow} E(X) = \lambda \Rightarrow \hat{\lambda} \) is consistent for \(\lambda \).

(c) Let \(X_1, \ldots, X_n \) be a random sample with mean \(\mu \) and variance \(\sigma^2 \).

\(\theta = (\mu, \sigma^2) \)

Let \(\bar{X} = E_{\mu, \sigma^2}(X) = \mu \)

\[
\frac{1}{n} \sum_{i=1}^{n} X_i^2 = E_{\mu, \sigma^2}(X^2) = \sigma^2 + \mu^2
\]

\(\Rightarrow \) Method of moment estimator are \(\hat{\mu} = \bar{X} \), \(\hat{\sigma^2} = \bar{X^2} - \hat{\mu}^2 \)
\[\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 - \overline{X}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2. \]

\(\overline{X} \) is unbiased and consistent estimator for \(\mu \).

\[E(\hat{\sigma}^2) = E\left(\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2 \right) = \frac{n-1}{n} \sigma^2 \neq \sigma^2 \]

\[\Rightarrow \hat{\sigma}^2 \text{ is not unbiased for } \sigma^2. \]

\[\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 - \overline{X}^2 \xrightarrow{p} \text{E}(X^2) - \mu^2 = \sigma^2 \]

\[\Rightarrow \hat{\sigma}^2 \text{ is consistent for } \sigma^2. \]

Maximum Likelihood Estimator:

Let \(X_1, \ldots, X_n \) be a random sample with p.d.f. \(f(x, \theta) \).

The joint p.d.f. of \(X_1, \ldots, X_n \) is

\[f(x_1, \ldots, x_n, \theta) = \prod_{i=1}^{n} f(x_i, \theta), x_i \in R, i = 1, \ldots, n \]

Let \(\Theta \) be the space of possible values of \(\theta \). We call \(\Theta \) the **parameter space**.

Def. The likelihood function of a random sample is defined as its joint p.d.f. as

\[L(\theta) = L(\theta, x_1, \ldots, x_n) = f(x_1, \ldots, x_n, \theta), \theta \in \Theta. \]

which is considered as a function of \(\theta \).

For \((x_1, \ldots, x_n) \) fixed, the value \(L(\theta, x_1, \ldots, x_n) \) is called the likelihood at \(\theta \).

Given observation \(x_1, \ldots, x_n \), the likelihood \(L(\theta, x_1, \ldots, x_n) \) is considered as the probability that \(X_1 = x_1, \ldots, X_n = x_n \) occurs when \(\theta \) is true.

Def. Let \(\hat{\theta} = \hat{\theta}(x_1, \ldots, x_n) \) be any value of \(\theta \) that maximizes \(L(\theta, x_1, \ldots, x_n) \).

Then we call \(\hat{\theta} = \hat{\theta}(x_1, \ldots, x_n) \) the **maximum likelihood estimator** (m.l.e) of \(\theta \). When \(X_1 = x_1, \ldots, X_n = x_n \) is observed, we call \(\hat{\theta} = \hat{\theta}(x_1, \ldots, x_n) \) the maximum likelihood estimate of \(\theta \).

Note:

(a) Why m.l.e ?

When \(L(\theta_1, x_1, \ldots, x_n) \geq L(\theta_2, x_1, \ldots, x_n) \),

we are more confident to believe \(\theta = \theta_1 \) than to believe \(\theta = \theta_2 \).
(b) How to derive m.l.e.?
\[
\frac{\partial \ln x}{\partial x} = \frac{1}{x} > 0 \quad \Rightarrow \quad \ln x \text{ is } \nearrow \text{ in } x \nabla
\]
⇒ If \(L(\theta_1) \geq L(\theta_2) \), then \(\ln L(\theta_1) \geq \ln L(\theta_2) \).
If \(\hat{\theta} \) is the m.l.e., then
\[
\ln L(\hat{\theta}, x_1, \ldots, x_n) = \max_{\theta \in \Theta} \ln L(\theta, x_1, \ldots, x_n)
\]

Two cases to solve m.l.e.:
\[
(b.1) \quad \frac{\partial \ln L(\theta)}{\partial \theta} = 0
\]
\[
(b.2) \quad L(\theta) \text{ is monotone. Solve } \max_{\theta \in \Theta} L(\theta, x_1, \ldots, x_n) \text{ from monotone property.}
\]

Order statistics:
Let \((X_1, \ldots, X_n)\) be a random sample with d.f. \(F\) and p.d.f. \(f\).
Let \((Y_1, \ldots, Y_n)\) be a permutation \((X_1, \ldots, X_n)\) such that \(Y_1 \leq Y_2 \leq \cdots \leq Y_n\).
Then we call \((Y_1, \ldots, Y_n)\) the order statistic of \((X_1, \ldots, X_n)\) where \(Y_1\) is the first (smallest) order statistic, \(Y_2\) is the second order statistic, \ldots, \(Y_n\) is the largest order statistic.

If \((X_1, \ldots, X_n)\) are independent, then
\[
P(X_1 \in A_1, X_2 \in A_2, \ldots, X_n \in A_n) = \int_{A_n} \cdots \int_{A_1} f(x_1, \ldots, x_n) dx_1 \cdots dx_n
\]
\[
= \int_{A_n} f_n(x_n)dx_n \cdots \int_{A_1} f_1(x_1)dx_1
\]
\[
= P(X_n \in A_n) \cdots P(X_1 \in A_1)
\]

Thm. Let \((X_1, \ldots, X_n)\) be a random sample from a “continuous distribution” with p.d.f. \(f(x)\) and d.f \(F(x)\). Then the p.d.f. of \(Y_n = \max\{X_1, \ldots, X_n\}\) is
\[
g_n(y) = n(F(y))^{n-1} f(y)
\]
and the p.d.f. of \(Y_1 = \min\{X_1, \ldots, X_n\}\) is
\[
g_1(y) = n(1 - F(y))^{n-1} f(y)
\]

Proof. This is a \(R^n \to R\) transformation. Distribution function of \(Y_n\) is
\[
G_n(y) = P(Y_n \leq y) = P(\max\{X_1, \ldots, X_n\} \leq y) = P(X_1 \leq y, \ldots, X_n \leq y)
\]
\[
= P(X_1 \leq y)P(X_2 \leq y) \cdots P(X_n \leq y) = (F(y))^n
\]

19
\[p.d.f. \text{ of } Y_n \text{ is } g_n(y) = D_y(F(y))^n = n(F(y))^{n-1}f(y) \]

Distribution function of \(Y_1 \) is

\[G_1(y) = P(Y_1 \leq y) = P(\min\{X_1, \ldots, X_n\} \leq y) = 1 - P(\min\{X_1, \ldots, X_n\} > y) \]
\[= 1 - P(X_1 > y, X_2 > y, \ldots, X_n > y) = 1 - P(X_1 > y)P(X_2 > y)\cdots P(X_n > y) \]
\[= 1 - (1 - F(y))^n \]

\[\Rightarrow \text{p.d.f. of } Y_1 \text{ is } g_1(y) = D_y(1 - (1 - F(y))^n) = n(1 - F(y))^{n-1}f(y) \]

Example: Let \((X_1, \ldots, X_n)\) be a random sample from \(U(0, \theta) \).
Find m.l.e. of \(\theta \). Is it unbiased and consistent?

sol: The p.d.f. of \(X \) is

\[f(x, \theta) = \begin{cases} \frac{1}{\theta} & \text{if } 0 \leq x \leq \theta \\ 0 & \text{elsewhere.} \end{cases} \]

Consider the indicator function

\[I_{(a,b)}(x) = \begin{cases} 1 & \text{if } a \leq x \leq b \\ 0 & \text{elsewhere.} \end{cases} \]

Then \(f(x, \theta) = \frac{1}{\theta} I_{[0,\theta]}(x) \).

The likelihood function is

\[L(\theta) = \prod_{i=1}^{n} \frac{1}{\theta} I_{[0,\theta]}(x_i) = \frac{1}{\theta^n} \prod_{i=1}^{n} I_{[0,\theta]}(x_i) \]

Let \(Y_n = \max\{X_1, \ldots, X_n\} \)

Then \(\prod_{i=1}^{n} I_{[0,\theta]}(x_i) = 1 \iff 0 \leq x_i \leq \theta, \text{ for all } i = 1, \ldots, n \iff 0 \leq y_n \leq \theta \)

We then have

\[L(\theta) = \frac{1}{\theta^n} I_{[0,\theta]}(y_n) = \frac{1}{\theta^n} I_{[y_n, \infty)}(\theta) = \begin{cases} \frac{1}{\theta^n} & \text{if } \theta \geq y_n \\ 0 & \text{if } \theta < y_n \end{cases} \]

\(L(\theta) \) is maximized when \(\theta = y_n \). Then m.l.e. of \(\theta \) is \(\hat{\theta} = Y_n \)

The d.f. of \(x \) is

\[F(x) = P(X \leq x) = \int_{0}^{x} \frac{1}{\theta} dt = \frac{x}{\theta}, 0 \leq x \leq \theta \]
The p.d.f. of \(Y \) is
\[
g_n(y) = n\left(\frac{y}{\theta}\right)^{n-1} \frac{1}{\theta} = n\frac{y^{n-1}}{\theta^n}, \quad 0 \leq y \leq \theta
\]

\[
E(Y_n) = \int_0^\theta y_n n \frac{y^{n-1}}{\theta^n} \, dy = \frac{n}{n+1} \theta \neq \theta \Rightarrow \text{m.l.e. } \hat{\theta} = Y_n \text{ is not unbiased.}
\]
However, \(E(Y_n) = \frac{n}{n+1} \theta \to \theta \) as \(n \to \infty \), m.l.e. \(\hat{\theta} \) is asymptotically unbiased.

\[
E(Y_n^2) = \int_0^\theta y_n^2 n \frac{y^{n-1}}{\theta^n} \, dy = \frac{n}{n+2} \theta^2
\]

\[
\text{Var}(Y_n) = E(Y_n^2) - (E(Y_n))^2 = \frac{n}{n+2} \theta^2 - \left(\frac{n}{n+1}\right)^2 \theta^2 \to \theta^2 - \theta^2 = 0 \text{ as } n \to \infty.
\]

\(\Rightarrow Y_n \overset{p}{\to} \theta \Rightarrow \text{m.l.e. } \hat{\theta} = Y_n \text{ is consistent for } \theta \).

Is there unbiased estimator for \(\theta \)?

\[
E\left(\frac{n+1}{n} Y_n\right) = \frac{n+1}{n} E(Y_n) = \frac{n+1}{n} \frac{n}{n+1} \theta = \theta
\]
\(\Rightarrow \frac{n+1}{n} Y_n \) is unbiased for \(\theta \).

Example :

(a) \(Y \sim b(n,p) \)

The likelihood function is
\[
L(p) = f_Y(y, p) = \binom{n}{y} p^y (1-p)^{n-y}
\]

\[
\ln L(p) = \ln \left(\binom{n}{y}\right) + y \ln p + (n-y) \ln (1-p)
\]

\[
\frac{\partial \ln L(p)}{\partial p} = \frac{y}{p} \frac{n-y}{1-p} = 0 \Leftrightarrow \frac{y}{p} = \frac{n-y}{1-p} \Leftrightarrow y(1-p) = p(n-y) \Leftrightarrow y = np
\]

\(\Rightarrow \text{m.l.e. } \hat{p} = \frac{Y}{n} \)

\(E(\hat{p}) = \frac{1}{n} E(Y) = p \Rightarrow \text{m.l.e. } \hat{p} = \frac{Y}{n} \) is unbiased.

\(\text{Var}(\hat{p}) = \frac{1}{n^2} \text{Var}(Y) = \frac{1}{n} p(1-p) \to 0 \text{ as } n \to \infty \)

\(\Rightarrow \text{m.l.e. } \hat{p} = \frac{Y}{n} \) is consistent for \(p \).

(b) \(X_1, \ldots, X_n \) are a random sample from \(N(\mu, \sigma^2) \). Want m.l.e.’s of \(\mu \) and \(\sigma^2 \)

The likelihood function is
\[
L(\mu, \sigma^2) = \prod_{i=1}^{\infty} \frac{1}{\sqrt{2\pi} \sigma^2} e^{-\frac{(x_i-\mu)^2}{2\sigma^2}} = (2\pi)^{-\frac{n}{2}} (\sigma^2)^{-\frac{n}{2}} e^{-\frac{\sum_{i=1}^{n}(x_i-\mu)^2}{2\sigma^2}}
\]
\[
\ln L(\mu, \sigma^2) = \left(-\frac{n}{2}\right) \ln (2\pi) - \frac{n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2 \\
\frac{\partial \ln L(\mu, \sigma^2)}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2 = 0 \Rightarrow \hat{\mu} = \bar{X} \\
\frac{\partial \ln L(\mu, \sigma^2)}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^{n} (x_i - \bar{X})^2 = 0 \Rightarrow \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{X})^2 \\
E(\hat{\mu}) = E(\bar{X}) = \mu \text{ (unbiased)}, \text{Var}(\hat{\mu}) = \text{Var}(\bar{X}) = \frac{\sigma^2}{n} \rightarrow 0 \text{ as } n \rightarrow \infty \\
\Rightarrow \text{m.l.e. } \hat{\mu} \text{ is consistent for } \mu. \\
E(\hat{\sigma}^2) = E\left(\frac{1}{n} \sum (X_i - \bar{X})^2\right) = \frac{n-1}{n} \sigma^2 \neq \sigma^2 \text{ (biased).} \\
E(\hat{\sigma}^2) = \frac{1}{n} \sigma^2 \rightarrow \sigma^2 \text{ as } n \rightarrow \infty \Rightarrow \hat{\sigma}^2 \text{ is asymptotically unbiased.}
\]

\[
\text{Var}(\hat{\sigma}^2) = \text{Var}\left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{X})^2\right) = \frac{1}{n^2} \text{Var}\left(\frac{\sum_{i=1}^{n} (x_i - \bar{X})^2}{\sigma^2}\right) = \frac{\sigma^4}{n^2} \text{Var}\left(\frac{\sum_{i=1}^{n} (x_i - \bar{X})^2}{\sigma^2}\right) = \frac{2(n-1)}{n^2} \sigma^4 \rightarrow 0 \text{ as } n \rightarrow \infty \\
\Rightarrow \text{m.l.e. } \hat{\sigma}^2 \text{ is consistent for } \sigma^2.
\]

Suppose that we have m.l.e. \(\hat{\theta} = \hat{\theta}(x_1, \ldots, x_n) \) for parameter \(\theta \) and our interest is a new parameter \(\tau(\theta) \), a function of \(\theta \).

What is the m.l.e. of \(\tau(\theta) \)?

The space of \(\tau(\theta) \) is \(T = \{ \tau : \exists \theta \in \Theta \text{ s.t } \tau = \tau(\theta) \} \)

Thm. If \(\hat{\theta} = \hat{\theta}(x_1, \ldots, x_n) \) is the m.l.e. of \(\theta \) and \(\tau(\theta) \) is a 1-1 function of \(\theta \), then m.l.e. of \(\tau(\theta) \) is \(\tau(\theta) \)

Proof. The likelihood function for \(\theta \) is \(L(\theta, x_1, \ldots, x_n) \). Then the likelihood function for \(\tau(\theta) \) can be derived as follows:

\[
L(\theta, x_1, \ldots, x_n) = L(\tau^{-1}(\tau(\theta)), x_1, \ldots, x_n) \\
= M(\tau(\theta), x_1, \ldots, x_n) \\
= M(\tau, x_1, \ldots, x_n), \tau \in T
\]
\[M(\tau(\hat{\theta}), x_1, \ldots, x_n) = L(\tau^{-1}(\hat{\theta}), x_1, \ldots, x_n) \]
\[= L(\hat{\theta}, x_1, \ldots, x_n) \]
\[\geq L(\theta, x_1, \ldots, x_n), \forall \theta \in \Theta \]
\[= L(\tau^{-1}(\tau(\theta)), x_1, \ldots, x_n) \]
\[= M(\tau(\theta), x_1, \ldots, x_n), \forall \theta \in \Theta \]
\[= M(\tau, x_1, \ldots, x_n), \tau \in T \]

\[\Rightarrow \tau(\hat{\theta}) \text{ is m.l.e. of } \tau(\theta). \]

This is the invariance property of m.l.e.

Example:
(1) If \(Y \sim b(n, p) \), m.l.e of \(p \) is \(\hat{p} = \frac{Y}{n} \)

\[\frac{\tau(p)}{\text{m.l.e. of } \tau(p)} \]
\[p^2 \quad \hat{p}^2 = \left(\frac{Y}{n}\right)^2 \]
\[\sqrt{p} \quad \sqrt{\hat{p}} = \sqrt{\frac{Y}{n}} \quad p(1-p) \text{ is not a 1-1 function of } p. \]
\[e^p \quad e^\hat{p} = e^{\frac{Y}{n}} \]
\[e^{-p} \quad e^{-\hat{p}} = e^{-\frac{Y}{n}} \]

(2) \(X_1, \ldots, X_n \sim \text{iid } N(\mu, \sigma^2) \), m.l.e.'s of \((\mu, \sigma^2)\) is \((\bar{X}, \frac{1}{n} \sum (X_i - \bar{X})^2)\).

m.l.e.'s of \((\mu, \sigma)\) is \((\bar{X}, \sqrt{\frac{1}{n} \sum (X_i - \bar{X})^2})\) (\(\because \sigma \in (0, \infty) \), \(\therefore \sigma^2 \to \sigma \) is 1-1)

You can also solve
\[\frac{\partial \ln L(\mu, \sigma^2, x_1, \ldots, x_n)}{\partial \mu} = 0 \]
\[\frac{\partial \ln L(\mu, \sigma^2, x_1, \ldots, x_n)}{\partial \sigma} = 0 \text{ for } \mu, \sigma \]

\((\mu^2, \sigma)\) is not a 1-1 function of \((\mu, \sigma^2)\).
\((\therefore \mu \in (-\infty, \infty) \), \(\therefore \mu \to \mu^2 \) isn’t 1-1)

Best estimator:

Def. An unbiased estimator \(\hat{\theta} = \hat{\theta}(X_1, \ldots, X_n) \) is called a uniformly minimum variance unbiased estimator (UMVUE) or best estimator if for any unbiased estimator \(\hat{\theta}^* \), we have
\[\text{Var}_\theta \hat{\theta} \leq \text{Var}_\theta \hat{\theta}^*, \text{ for } \theta \in \Theta \]

(\(\hat{\theta} \) is uniformly better than \(\hat{\theta}^* \) in variance.)
There are several ways in deriving UMVUE of θ.

Cramer-Rao lower bound for variance of unbiased estimator:

Regularity conditions:

(a) Parameter space Θ is an open interval. $(a, \infty), (a, b), (b, \infty)$, a, b are constants not depending on θ.

(b) Set $\{x : f(x, \theta) = 0\}$ is independent of θ.

(c) $\int \frac{\partial f(x, \theta)}{\partial \theta} dx = \frac{\partial}{\partial \theta} \int f(x, \theta) dx = 0$

(d) If $T = t(x_1, \ldots, x_n)$ is an unbiased estimator, then
\[
\int t \frac{\partial f(x, \theta)}{\partial \theta} dx = \frac{\partial}{\partial \theta} \int t f(x, \theta) dx
\]

Thm. Cramer-Rao (C-R)

Suppose that the regularity conditions hold.

If $\hat{\tau}(\theta) = t(X_1, \ldots, X_n)$ is unbiased for $\tau(\theta)$, then
\[
\text{Var}_\theta \hat{\tau}(\theta) \geq \frac{(\tau'(\theta))^2}{n E_\theta [\left(\frac{\partial \ln f(x, \theta)}{\partial \theta}\right)^2]} = \frac{(\tau'(\theta))^2}{-n E_\theta [\left(\frac{\partial^2 \ln f(x, \theta)}{\partial \theta^2}\right)]} \quad \text{for } \theta \in \Theta
\]

Proof. Consider only the continuous distribution.

\[
\mathbb{E}_\theta \left[\frac{\partial \ln f(x, \theta)}{\partial \theta}\right] = \int_{-\infty}^{\infty} \frac{\partial \ln f(x, \theta)}{\partial \theta} f(x, \theta) dx = \int_{-\infty}^{\infty} \frac{\partial f(x, \theta)}{\partial \theta} dx
\]
\[
= \frac{\partial}{\partial \theta} \int_{-\infty}^{\infty} f(x, \theta) dx = 0
\]

$\tau(\theta) = \mathbb{E}_\theta \hat{\tau}(\theta) = \mathbb{E}_\theta (t(x_1, \ldots, x_n)) = \int \cdots \int t(x_1, \ldots, x_n) \prod_{i=1}^{n} f(x_i, \theta) \prod_{i=1}^{n} dx_i$

Taking derivatives both sides.

\[
\tau'(\theta) = \frac{\partial}{\partial \theta} \int \cdots \int t(x_1, \ldots, x_n) \prod_{i=1}^{n} f(x_i, \theta) \prod_{i=1}^{n} dx_i - \tau(\theta) \frac{\partial}{\partial \theta} \int \cdots \int \prod_{i=1}^{n} f(x_i, \theta) \prod_{i=1}^{n} dx_i
\]
\[
= \int \cdots \int t(x_1, \ldots, x_n) \frac{\partial}{\partial \theta} \prod_{i=1}^{n} f(x_i, \theta) \prod_{i=1}^{n} dx_i - \tau(\theta) \frac{\partial}{\partial \theta} \int \cdots \int \prod_{i=1}^{n} f(x_i, \theta) \prod_{i=1}^{n} dx_i
\]
\[
= \int \cdots \int (t(x_1, \ldots, x_n) - \tau(\theta)) \frac{\partial}{\partial \theta} \prod_{i=1}^{n} f(x_i, \theta) \prod_{i=1}^{n} dx_i
\]
Now,
\[
\frac{\partial}{\partial \theta} \prod_{i=1}^{n} f(x_i, \theta) = \frac{\partial}{\partial \theta} [f(x_1, \theta)f(x_2, \theta) \cdots f(x_n, \theta)]
\]
\[
= (\frac{\partial}{\partial \theta} f(x_1, \theta)) \prod_{i \neq 1} f(x_i, \theta) + \cdots + (\frac{\partial}{\partial \theta} f(x_n, \theta)) \prod_{i \neq n} f(x_i, \theta)
\]
\[
= \sum_{j=1}^{n} \frac{\partial}{\partial \theta} f(x_j, \theta) \prod_{i \neq j} f(x_i, \theta)
\]
\[
= \sum_{j=1}^{n} \frac{\partial \ln f(x_j, \theta)}{\partial \theta} f(x_j, \theta) \prod_{i \neq j} f(x_i, \theta)
\]
\[
= \sum_{j=1}^{n} \frac{\partial \ln f(x_j, \theta)}{\partial \theta} \prod_{j=1}^{n} f(x_i, \theta)
\]

Cauchy-Swartz Inequality
\[
[E(XY)]^2 \leq E(X^2)E(Y^2)
\]

Then
\[
\tau'(\theta) = \int \cdots \int (t(x_1, \ldots, x_n) - \tau(\theta))(\sum_{j=1}^{n} \frac{\partial \ln f(x_j, \theta)}{\partial \theta}) \prod_{i=1}^{n} f(x_i, \theta) \prod_{i=1}^{n} dx_i
\]
\[
= E[(t(x_1, \ldots, x_n) - \tau(\theta)) \sum_{j=1}^{n} \frac{\partial \ln f(x_j, \theta)}{\partial \theta}] = (\tau'(\theta))^2 \leq E[(t(x_1, \ldots, x_n) - \tau(\theta))^2] E[(\sum_{j=1}^{n} \frac{\partial \ln f(x_j, \theta)}{\partial \theta})^2]
\]
\[
\Rightarrow \text{Var}(\hat{\tau}(\theta)) \geq \frac{(\tau'(\theta))^2}{E[(\sum_{j=1}^{n} \frac{\partial \ln f(x_j, \theta)}{\partial \theta})^2]}
\]

Since
\[
E[(\sum_{j=1}^{n} \frac{\partial \ln f(x_j, \theta)}{\partial \theta})^2] = \sum_{j=1}^{n} E\left(\frac{\partial \ln f(x_j, \theta)}{\partial \theta}\right)^2 + \sum_{i \neq j} E\left(\frac{\partial \ln f(x_j, \theta)}{\partial \theta} \frac{\partial \ln f(x_i, \theta)}{\partial \theta}\right)
\]
\[
= \sum_{j=1}^{n} E\left(\frac{\partial \ln f(x_j, \theta)}{\partial \theta}\right)^2 + \sum_{i \neq j} E\left(\frac{\partial \ln f(x_j, \theta)}{\partial \theta}\right)^2 = n E\left(\frac{\partial \ln f(x_j, \theta)}{\partial \theta}\right)^2
\]

25
Then, we have

\[\text{Var}_{\theta} \hat{\tau}(\theta) \geq \frac{(\tau'(\theta))^2}{nE_{\theta}[(\frac{\partial \ln f(x,\theta)}{\partial \theta})^2]} \]

You may further check that

\[E_{\theta}(\frac{\partial^2 \ln f(x,\theta)}{\partial \theta^2}) = -E_{\theta}(\frac{\partial \ln f(x,\theta)}{\partial \theta})^2 \]

\[\square \]

Thm. If there is an unbiased estimator \(\hat{\tau}(\theta) \) with variance achieving the Cramer-Rao lower bound \(\frac{(\tau'(\theta))^2}{-nE_{\theta}[(\frac{\partial \ln f(x,\theta)}{\partial \theta})^2]} \), then \(\hat{\tau}(\theta) \) is a UMVUE of \(\tau(\theta) \).

Note:

If \(\tau(\theta) = \theta \), then any unbiased estimator \(\hat{\theta} \) satisfies

\[\text{Var}_{\theta} \hat{\theta} \geq \frac{(\tau'(\theta))^2}{-nE_{\theta}[(\frac{\partial \ln f(x,\theta)}{\partial \theta})^2]} \]

Example:

(a) \(X_1, \ldots, X_n \sim \text{Poisson}(\lambda) \), \(E(X) = \lambda, \text{Var}(X) = \lambda \).

MLE \(\hat{\lambda} = \bar{X}, E(\hat{\lambda}) = \lambda, \text{Var}(\hat{\lambda}) = \frac{\lambda}{n} \).

p.d.f. \(f(x,\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}, x = 0, 1, \ldots \)

\[\Rightarrow \ln f(x,\lambda) = x \ln \lambda - \lambda - \ln x! \]

\[\Rightarrow \frac{\partial}{\partial \lambda} \ln f(x,\lambda) = x \frac{\lambda}{\lambda} - 1 \]

\[\Rightarrow \frac{\partial^2}{\partial \lambda^2} \ln f(x,\lambda) = -\frac{x}{\lambda^2} \]

\[E(\frac{\partial^2}{\partial \lambda^2} \ln f(x,\lambda)) = E(-\frac{x}{\lambda^2}) = -\frac{E(X)}{\lambda^2} = -\frac{1}{\lambda} \]

Cramer-Rao lower bound is

\[\frac{1}{-n(-\frac{1}{\lambda})} = \frac{\lambda}{n} = \text{Var}(\hat{\lambda}) \]

\[\Rightarrow \text{MLE } \hat{\lambda} = \bar{X} \text{ is the UMVUE of } \lambda. \]
(b) $X_1, \ldots, X_n \overset{iid}{\sim} \text{Bernoulli}(p)$, $E(X) = p$, $\text{Var}(X) = p(1 - p)$.

Want UMVUE of p.

p.d.f $f(x, p) = p^x(1 - p)^{1-x}$

$\Rightarrow \ln f(x, p) = x \ln p + (1 - x) \ln(1 - p)$

$\frac{\partial}{\partial p} \ln f(x, p) = \frac{x}{p} - \frac{1-x}{1-p}$

$\frac{\partial^2}{\partial p^2} \ln f(x, p) = -\frac{x}{p^2} + \frac{1-x}{(1-p)^2}$

$E\left(\frac{\partial^2}{\partial p^2} \ln f(X, p)\right) = E\left(-\frac{X}{p^2} + \frac{1-X}{(1-p)^2}\right) = -\frac{1}{p} + \frac{1}{1-p} = -\frac{1}{p(1-p)}$

C-R lower bound for p is

$$-\frac{1}{n\left(-\frac{1}{p(1-p)}\right)} = \frac{p(1-p)}{n}$$

m.l.e. of p is $\hat{p} = \overline{X}$

$E(\hat{p}) = E(\overline{X}) = p$, $\text{Var}(\hat{p}) = \text{Var}(\overline{X}) = \frac{p(1-p)}{n}$ = C-R lower bound.

\Rightarrow MLE \hat{p} is the UMVUE of p.

Chapter 4. Continue to Point Estimation-UMVUE

Sufficient Statistic:
A, B are two events. The conditional probability of A given B is

\[P(A|B) = \frac{P(A \cap B)}{P(B)}, A \subset S. \]

\(P(\cdot|B) \) is a probability set function with domain of subsets of sample space S.

Let \(X, Y \) be two r.v’s with joint p.d.f \(f(x, y) \) and marginal p.d.f’s \(f_X(x) \) and \(f_Y(y) \). The conditional p.d.f of \(Y \) given \(X = x \) is

\[f(y|x) = \frac{f(x, y)}{f_X(x)}, y \in R \]

Function \(f(y|x) \) is a p.d.f satisfying \(\int_{-\infty}^{\infty} f(y|x)dy = 1 \)

In estimation of parameter \(\theta \), we have a random sample \(X_1, \ldots, X_n \) from p.d.f \(f(x, \theta) \). The information we have about \(\theta \) is contained in \(X_1, \ldots, X_n \).

Let \(U = u(X_1, \ldots, X_n) \) be a statistic having p.d.f \(f_U(u, \theta) \)

The conditional p.d.f \(X_1, \ldots, X_n \) given \(U = u \) is

\[f(x_1, \ldots, x_n|u) = \frac{f(x_1, \ldots, x_n, \theta)}{f_U(u, \theta)}, \{(x_1, \ldots, x_n) : u(x_1, \ldots, x_n) = u\} \]

Function \(f(x_1, \ldots, x_n|u) \) is a joint p.d.f with

\[\int_{u(x_1, \ldots, x_n)=u} \cdots \int f(x_1, \ldots, x_n|u)dx_1 \cdots dx_n = 1 \]

Let \(X \) be r.v. and \(U = u(X) \)

\[f(x|U = u) = \frac{f(x, u)}{f_U(u)} = \begin{cases} \frac{f_X(x)}{f_U(u)} & \text{if } u(X) = u \\ 0 & \text{if } u(X) \neq u \end{cases} \]

If, for any \(u \), conditional p.d.f \(f(x_1, \ldots, x_n, \theta|u) \) is unrelated to parameter \(\theta \), then the random sample \(X_1, \ldots, X_n \) contains no information about \(\theta \) when \(U = u \) is observed. This says that \(U \) contains exactly the same amount of information about \(\theta \) as \(X_1, \ldots, X_n \).

Def. Let \(X_1, \ldots, X_n \) be a random sample from a distribution with p.d.f \(f(x, \theta), \theta \in \Theta \). We call a statistic \(U = u(X_1, \ldots, X_n) \) a **sufficient statistic** if, for any value \(U = u \), the conditional p.d.f \(f(x_1, \ldots, x_n|u) \) and its domain all not
depend on parameter θ.
Let $U = (X_1, \ldots, X_n)$. Then

$$f(x_1, \ldots, x_n, \theta | u = (x_1^*, \ldots, x_n^*)) = \begin{cases} \frac{f(x_1, \ldots, x_n, \theta)}{f(x_1^*, \ldots, x_n^*, \theta)} & \text{if } x_1 = x_1^*, x_2 = x_2^*, \ldots, x_n = x_n^* \\ 0 & \text{if } x_i \neq x_i^* \text{ for some } i \text{'s.} \end{cases}$$

Then (X_1, \ldots, X_n) itself is a sufficient statistic of θ.

Q: Why sufficiency?
A: We want a statistic with dimension as small as possible and contains information about θ the same amount as X_1, \ldots, X_n does.

Def. If $U = u(X_1, \ldots, X_n)$ is a sufficient statistic with smallest dimension, it is called the minimal sufficient statistic.

Example:

(a) Let (X_1, \ldots, X_n) be a random sample from a continuous distribution with p.d.f $f(x, \theta)$. Consider the order statistic $Y_1 = \min \{X_1, \ldots, X_n\}, \ldots, Y_n = \max \{X_1, \ldots, X_n\}$. If $Y_1 = y_1, \ldots, Y_n = y_n$ are observed, sample X_1, \ldots, X_n have equal chance to have values in

$$\{(x_1, \ldots, x_n) : (x_1, \ldots, x_n) \text{ is a permutation of } (y_1, \ldots, y_n)\}.$$

Then the conditional joint p.d.f of X_1, \ldots, X_n given $Y_1 = y_1, \ldots, Y_n = y_n$ is

$$f(x_1, \ldots, x_n, \theta | y_1, \ldots, y_n) = \begin{cases} \frac{1}{n!} & \text{if } x_1, \ldots, x_n \text{ is a permutation of } y_1, \ldots, y_n. \\ 0 & \text{otherwise.} \end{cases}$$

Then order statistic (Y_1, \ldots, Y_n) is also a sufficient statistic of θ. Order statistic is not a good sufficient statistic since it has dimension n.

(b) Let X_1, \ldots, X_n be a random sample from Bernoulli distribution. The joint p.d.f of X_1, \ldots, X_n is

$$f(x_1, \ldots, x_n, p) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i} = p^{\sum x_i} (1-p)^{n-\sum x_i}, x_i = 0, 1, i = 1, \ldots, n.$$

Consider the statistic $Y = \sum X_i$ which has binomial distribution $b(n, p)$ with p.d.f

$$f_Y(y, p) = \binom{n}{y} p^y (1-p)^{n-y}, y = 0, 1, \ldots, n$$
If $Y = y$, the space of (X_1, \ldots, X_n) is \{$(x_1, \ldots, x_n) : \sum_{i=1}^{n} x_i = y$\}

The conditional p.d.f of X_1, \ldots, X_n given $Y = y$ is

$$f(x_1, \ldots, x_n, p | y) = \begin{cases} \frac{n \sum_{i=1}^{n} x_i (1-p)^{n-\sum_{i=1}^{n} x_i}}{n^p (1-p)^{n-y}} & \text{if } \sum_{i=1}^{n} x_i = y \\ 0 & \text{if } \sum_{i=1}^{n} x_i \neq y \end{cases}$$

which is independent of p.

Hence, $Y = \sum_{i=1}^{n} X_i$ is a sufficient statistic of p and is a minimal sufficient statistic.

(c) Let X_1, \ldots, X_n be a random sample from uniform distribution $U(0, \theta)$.

Want to show that the largest order statistic $Y_n = \max\{X_1, \ldots, X_n\}$ is a sufficient statistic.

The joint p.d.f of X_1, \ldots, X_n is

$$f(x_1, \ldots, x_n, \theta) = \prod_{i=1}^{n} \frac{1}{\theta} I(0 < x_i < \theta) = \frac{1}{\theta^n} \prod_{i=1}^{n} I(0 < x_i < \theta)$$

$$= \begin{cases} \frac{1}{\theta^n} & \text{if } 0 < x_i < \theta, i = 1, \ldots, n \\ 0 & \text{otherwise.} \end{cases}$$

The p.d.f of Y_n is

$$f_{Y_n}(y, \theta) = n \left(\frac{y}{\theta}\right)^{n-1} \frac{1}{\theta} = n \frac{y^{n-1}}{\theta^n}, 0 < y < \theta$$

When $Y_n = y$ is given, X_1, \ldots, X_n be values with $0 < x_i \leq y, i = 1, \ldots, n$.

The conditional p.d.f of X_1, \ldots, X_n given $Y_n = y$ is

$$f(x_1, \ldots, x_n | y) = \frac{f(x_1, \ldots, x_n, \theta)}{f_{Y_n}(y, \theta)} = \begin{cases} \frac{1}{n y^{n-1}} & 0 < x_i \leq y, i = 1, \ldots, n \\ 0 & \text{otherwise.} \end{cases}$$

\Rightarrow independent of θ.

So, $Y_n = \max\{X_1, \ldots, X_n\}$ is a sufficient statistic of θ.

Q:
(a) If U is a sufficient statistic, are $U+5$, U^2, $\cos(U)$ all sufficient for θ?

(b) Is there easier way in finding sufficient statistic?

$T = t(X_1, \ldots, X_n)$ is sufficient for θ if conditional p.d.f $f(x_1, \ldots, x_n, \theta|t)$ is

indep. of θ.

Independence:

1. function $f(x_1, \ldots, x_n, \theta|t)$ not depend on θ.
2. domain of X_1, \ldots, X_n not depend on θ.

Thm. Factorization Theorem.

Let X_1, \ldots, X_n be a random sample from a distribution with p.d.f $f(x, \theta)$.

A statistic $U = u(X_1, \ldots, X_n)$ is sufficient for θ iff there exists functions

$K_1, K_2 \geq 0$ such that the joint p.d.f of X_1, \ldots, X_n may be formulated as

$f(x_1, \ldots, x_n, \theta) = K_1(u(X_1, \ldots, X_n), \theta)K_2(x_1, \ldots, x_n)$ where K_2 is not a function of θ.

Proof. Consider only the continuous r.v.'s.

\Rightarrow) If U is sufficient for θ, then

$$f(x_1, \ldots, x_n, \theta|u) = \frac{f(x_1, \ldots, x_n, \theta)}{f_U(u, \theta)}$$

is not a function of θ

$$\Rightarrow f(x_1, \ldots, x_n, \theta) = f_U(u(X_1, \ldots, X_n), \theta)f(x_1, \ldots, x_n|u)$$

$$= K_1(u(X_1, \ldots, X_n), \theta)K_2(x_1, \ldots, x_n)$$

\Leftarrow) Suppose that $f(x_1, \ldots, x_n, \theta) = K_1(u(X_1, \ldots, X_n), \theta)K_2(x_1, \ldots, x_n)$

Let $Y_1 = u_1(X_1, \ldots, X_n), Y_2 = u_2(X_1, \ldots, X_n), \ldots, Y_n = u_n(X_1, \ldots, X_n)$ be a

1-1 function with inverse functions $x_1 = w_1(y_1, \ldots, y_n), x_2 = w_2(y_1, \ldots, y_n), \ldots, x_n = w_n(y_1, \ldots, y_n)$ and Jacobian

$$J = \begin{vmatrix}
\frac{\partial x_1}{\partial y_1} & \cdots & \frac{\partial x_1}{\partial y_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial x_n}{\partial y_1} & \cdots & \frac{\partial x_n}{\partial y_n}
\end{vmatrix}$$

(not depend on θ)

The joint p.d.f of Y_1, \ldots, Y_n is

$$f_{Y_1, \ldots, Y_n}(y_1, \ldots, y_n, \theta) = f(w_1(y_1, \ldots, y_n), \ldots, w_n(y_1, \ldots, y_n), \theta)|J|$$

$$= K_1(y_1, \theta)K_2(w_1(y_1, \ldots, y_n), \ldots, w_n(y_1, \ldots, y_n), \theta)|J|$$
The marginal p.d.f of $U = Y_1$ is
\[
f_U(y_1, \theta) = K_1(y_1, \theta) \int \cdots \int K_2(w_1(y_1, \ldots, y_n), \ldots, w_n(y_1, \ldots, y_n)) |J| dy_2 \cdots dy_n
\]
not depend on θ.

Then the conditional p.d.f of X_1, \ldots, X_n given $U = u$ is
\[
f(x_1, \ldots, x_n, \theta | u) = \frac{f(x_1, \ldots, x_n, \theta)}{f_U(u, \theta)} = \frac{K_2(x_1, \ldots, x_n)}{\int \cdots \int K_2(w_1(y_1, \ldots, y_n), \ldots, w_n(y_1, \ldots, y_n), \theta) |J| dy_2 \cdots dy_n}
\]
which is independent of θ.

This indicates that U is sufficient for θ.

Example:

(a) X_1, \ldots, X_n is a random sample from Poisson(λ). Want sufficient statistic for λ.

Joint p.d.f of X_1, \ldots, X_n is
\[
f(x_1, \ldots, x_n, \lambda) = \prod_{i=1}^{n} \frac{\lambda^{x_i} e^{-\lambda}}{x_i!} = \frac{\lambda^{\sum x_i} e^{-n\lambda}}{\prod_{i=1}^{n} x_i!} = \lambda^{\sum x_i} e^{-n\lambda} \frac{1}{\prod_{i=1}^{n} x_i!}
\]
\[
= K_1(\sum_{i=1}^{n} x_i, \lambda) K_2(x_1, \ldots, x_n)
\]
\[
\Rightarrow \sum_{i=1}^{n} X_i \text{ is sufficient for } \lambda.
\]

We also have
\[
f(x_1, \ldots, x_n, \lambda) = \lambda^{\bar{x}} e^{-n\lambda} \frac{1}{\prod_{i=1}^{n} x_i!} = K_1(\bar{x}, \lambda) K_2(x_1, \ldots, x_n)
\]
\[
\Rightarrow \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \text{ is sufficient for } \lambda.
\]

We also have
\[
f(x_1, \ldots, x_n, \lambda) = \lambda^{\frac{1}{2}} e^{-n\lambda} \frac{1}{\prod_{i=1}^{n} x_i!} = K_1(\bar{x}^2, \lambda) K_2(x_1, \ldots, x_n)
\]
\[
\Rightarrow \bar{X}^2 \text{ is sufficient for } \lambda.
\]
(b) Let X_1, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$. Want sufficient statistic for (μ, σ^2).

Joint p.d.f of X_1, \ldots, X_n is

\[f(x_1, \ldots, x_n, \mu, \sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x_i-\mu)^2}{2\sigma^2}} = \frac{1}{(2\pi)^\frac{n}{2}(\sigma^2)^\frac{n}{2}} e^{-\frac{\sum_{i=1}^{n}(x_i-\mu)^2}{2\sigma^2}} \]

\[\sum_{i=1}^{n}(x_i-\mu)^2 = \sum_{i=1}^{n}(x_i-\bar{x}+\bar{x}-\mu)^2 = \sum_{i=1}^{n}(x_i-\bar{x})^2 + n(\bar{x}-\mu)^2 = (n-1)s^2 + n(\bar{x}-\mu)^2 \]

\[s^2 = \frac{1}{n-1} \sum_{i=1}^{n}(x_i - \bar{x})^2 \]

\[f(x_1, \ldots, x_n, \mu, \sigma^2) = \frac{1}{(2\pi)^\frac{n}{2}(\sigma^2)^\frac{n}{2}} e^{-\frac{(n-1)s^2 + n(\bar{x}-\mu)^2}{2\sigma^2}} \cdot 1 = K_1(\bar{x}, s^2, \mu, \sigma^2)K_2(x_1, \ldots, x_n) \]

$\Rightarrow (\bar{x}, s^2)$ is sufficient for (μ, σ^2).

What is useful with a sufficient statistic for point estimation?

Review: X, Y r.v.’s with join p.d.f $f(x, y)$.

Conditional p.d.f

\[f(y|x) = \frac{f(x, y)}{f_X(x)} \Rightarrow f(x, y) = f(y|x)f_X(x) \]

\[f(x|y) = \frac{f(x, y)}{f_Y(y)} \Rightarrow f(x, y) = f(x|y)f_Y(y) \]

Conditional expectation of Y given $X = x$ is

\[E(Y|x) = \int_{-\infty}^{\infty} y f(y|x) dy \]

The random conditional expectation $E(Y|X)$ is function $E(Y|x)$ with x replaced by X.

Conditional variance of Y given $X = x$ is

\[\text{Var}(Y|x) = E[(Y - E(Y|x))^2|x] = E(Y^2|x) - (E(Y|x))^2 \]

The conditional variance $\text{Var}(Y|X)$ is $\text{Var}(Y|x)$ replacing x by X.

Thm. Let Y and X be two r.v.’s.

(a) $E[E(Y|x)] = E(Y)$

(b) $\text{Var}(Y) = E(\text{Var}(Y|x)) + \text{Var}(E(Y|x))$
Proof. (a)

\[
E[E(Y|x)] = \int_{-\infty}^{\infty} E(Y|x) f_X(x) \, dx \\
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(y|x) dy f_X(x) \, dx \\
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x,y) \, dxdy \\
= \int_{-\infty}^{\infty} y \left(\int_{-\infty}^{\infty} f(x,y) \, dx \right) dy \\
= \int_{-\infty}^{\infty} y f_Y(y) dy \\
= E(Y)
\]

(b)

\[
\text{Var}(Y|x) = E(Y^2|x) - (E(Y|x))^2 \\
\Rightarrow E(\text{Var}(Y|x)) = E[E(Y^2|x)] - E[(E(Y|x))^2] = E(Y^2) - E[(E(Y|x))^2]
\]

Also,
\[
\text{Var}(E(Y|x)) = E[(E(Y|x))^2] - E[(E(Y|x))]^2 \\
= E[(E(Y|x))^2] - (E(Y))^2
\]

\[
\Rightarrow E(\text{Var}(Y|x)) + \text{Var}(E(Y|x)) = E(Y^2) - (E(Y))^2 = \text{Var}(Y)
\]

Now, we comeback to the estimation of parameter function \(\tau(\theta) \). We have a random sample \(X_1, \ldots, X_n \) from \(f(x, \theta) \).

Lemma. Let \(\hat{\tau}(X_1, \ldots, X_n) \) be an unbiased estimator of \(\tau(\theta) \) and \(U = u(X_1, \ldots, X_n) \) is a statistic. Then

(a) \(E_\theta[\hat{\tau}(X_1, \ldots, X_n)|U] \) is unbiased for \(\tau(\theta) \)

(b) \(\text{Var}_\theta(E[\hat{\tau}(X_1, \ldots, X_n)|U]) \leq \text{Var}_\theta(\hat{\tau}(X_1, \ldots, X_n)) \)

Proof. (a)

\[
E_\theta[E(\hat{\tau}(X_1, \ldots, X_n)|U)] = E_\theta(\hat{\tau}(X_1, \ldots, X_n)) = \tau(\theta), \forall \theta \in \Theta.
\]

Then \(E_\theta[\hat{\tau}(X_1, \ldots, X_n)|U] \) is unbiased for \(\tau(\theta) \).

(b)

\[
\text{Var}_\theta(\hat{\tau}(X_1, \ldots, X_n)) = E_\theta[\text{Var}_\theta(\hat{\tau}(X_1, \ldots, X_n)|U)] + \text{Var}_\theta[E_\theta(\hat{\tau}(X_1, \ldots, X_n)|U)] \\
\geq \text{Var}_\theta[E_\theta(\hat{\tau}(X_1, \ldots, X_n)|U)], \forall \theta \in \Theta.
\]
Conclusions:

(a) For any estimator $\hat{\tau}(X_1, \ldots, X_n)$ which is unbiased for $\tau(\theta)$, and any statistic U, $E_\theta[\hat{\tau}(X_1, \ldots, X_n)|U]$ is unbiased for $\tau(\theta)$ and with variance smaller than or equal to $\hat{\tau}(X_1, \ldots, X_n)$.

(b) However, $E_\theta[\hat{\tau}(X_1, \ldots, X_n)|U]$ may not be a statistic. If it is not, it cannot be an estimator of $\tau(\theta)$.

(c) If U is a sufficient statistic, $f(x_1, \ldots, x_n, \theta|u)$ is independent of θ, then $E_\theta[\hat{\tau}(X_1, \ldots, X_n)|u]$ is independent of θ. So, $E_\theta[\hat{\tau}(X_1, \ldots, X_n)|U]$ is an unbiased estimator.

If U is not a sufficient statistic, $f(x_1, \ldots, x_n, \theta|u)$ is not only a function of u but also a function of θ, then $E_\theta[\hat{\tau}(X_1, \ldots, X_n)|u]$ is a function of u and θ. And $E_\theta[\hat{\tau}(X_1, \ldots, X_n)|u]$ is not a statistic.

Thm. Rao-Blackwell

If $\hat{\tau}(X_1, \ldots, X_n)$ is unbiased for $\tau(\theta)$ and U is a sufficient statistic, then

(a) $E_\theta[\hat{\tau}(X_1, \ldots, X_n)|U]$ is a statistic.

(b) $E_\theta[\hat{\tau}(X_1, \ldots, X_n)|U]$ is unbiased for $\tau(\theta)$.

(c) $Var_\theta(E[\hat{\tau}(X_1, \ldots, X_n)|U]) \leq Var_\theta(\hat{\tau}(X_1, \ldots, X_n)), \forall \theta \in \Theta$.

If $\hat{\tau}(\theta)$ is an unbiased estimator for $\tau(\theta)$ and U_1, U_2, \ldots are sufficient statistics, then we can improve $\hat{\tau}(\theta)$ with the following fact:

$$Var_\theta(E[\hat{\tau}(\theta)|U_1]) \leq Var_\theta(\hat{\tau}(\theta))$$
$$Var_\theta E(E(\hat{\tau}(\theta)|U_1|U_2) \leq Var_\theta E(\hat{\tau}(\theta)|U_1)$$
$$Var_\theta E[E(\hat{\tau}(\theta)|U_1)|U_2]|U_3 \leq Var_\theta E(E(\hat{\tau}(\theta)|U_1)|U_2)$$

$$\vdots$$

Will this process ends with Cramer-Rao lower bound?

This can be solved with “complete statistic”.

Note: Let U be a statistic and h is a function.

(a) If $h(U) = 0$ then $E_\theta(h(U)) = E_\theta(0) = 0, \forall \theta \in \Theta$.
(b) If $P_\theta(h(U) = 0) = 1, \forall \theta \in \Theta$, $h(U)$ has a p.d.f

$$f_{h(U)}(h) = \begin{cases} 1 & \text{if } h = 0 \\ 0 & \text{otherwise.} \end{cases}$$

Then $E_\theta(h(U)) = \sum_{all \ h} h f_{h(U)}(h) = 0$.

Def. X_1, \ldots, X_n is random sample from $f(x, \theta)$. A statistic $U = u(X_1, \ldots, X_n)$ is a complete statistic if for any function $h(U)$ such that $E_\theta(h(U)) = 0, \forall \theta \in \Theta$, then $P_\theta(h(U) = 0) = 1, \forall \theta \in \Theta$.

Q: For any statistic U, how can we verify if it is complete or not complete?

A:

1. To prove completeness, you need to show that for any function $h(U)$ with $0 = E_\theta(h(U)), \forall \theta \in \Theta$, the following $1 = P_\theta(h(U) = 0), \forall \theta \in \Theta$ hold.

2. To prove in-completeness, you need only to find one function $h(U)$ that satisfies $E_\theta(h(U)) = 0, \forall \theta \in \Theta$ and $P_\theta(h(U) = 0) < 1, \text{ for some } \theta \in \Theta$.

Examples:

(a) $X_1, \ldots, X_n \overset{iid}{\sim} \text{Bernoulli}(p)$

Find a complete statistic and in-complete statistic?

sol: (a.1) We show that $Y = \sum_{i=1}^n X_i$ is a complete statistic. $Y \sim b(n, p)$.

Suppose that function $h(Y)$ satisfies $0 = E_p h(Y), \forall 0 < p < 1$.

Now,

$$0 = E_p h(Y) = \sum_{y=0}^n h(y) \binom{n}{y} p^y (1-p)^{n-y}$$

$$= (1-p)^n \sum_{y=0}^n h(y) \binom{n}{y} \left(\frac{p}{1-p} \right)^y, \forall 0 < p < 1$$

$$\Leftrightarrow 0 = \sum_{y=0}^n h(y) \binom{n}{y} \left(\frac{p}{1-p} \right)^y, \forall 0 < p < 1$$

(Let $\theta = \frac{p}{1-p}, 0 < p < 1 \Leftrightarrow 0 < \theta < \infty$)

$$\Leftrightarrow 0 = \sum_{y=0}^n h(y) \binom{n}{y} \theta^y, 0 < \theta < \infty$$
An order \(n+1 \) polynomial equation cannot have infinite solutions except that coefficients are zero’s.

\[\Rightarrow h(y) \binom{n}{y} = 0, y = 0, \ldots, n \text{ for } 0 < \theta < \infty \]

\[\Rightarrow h(y) = 0, y = 0, \ldots, n \text{ for } 0 < p < 1. \]

\[\Rightarrow 1 = P_p(h(Y) = 0) \geq P_p(Y = 0, \ldots, n) = 1 \]

\[\Rightarrow Y = \sum_{i=1}^{n} X_i \text{ is complete} \]

(a.2) We show that \(Z = X_1 - X_2 \) is not complete.

\[E_p Z = E_p(X_1 - X_2) = E_p X_1 - E_p X_2 = p - p = 0, \forall 0 < p < 1 \]

\[P_p(Z = 0) = P_p(X_1 - X_2 = 0) = P_p(X_1 = X_2 = 0 \text{ or } X_1 = X_2 = 1) \]

\[= P_p(X_1 = X_2 = 0) + P_p(X_1 = X_2 = 1) \]

\[= (1 - p)^2 + p^2 < 1 \text{ for } 0 < p < 1. \]

\[\Rightarrow Z = X_1 - X_2 \text{ is not complete.} \]

(b) Let \((X_1, \ldots, X_n) \) be a random sample from \(U(0, \theta) \).

We have to show that \(Y_n = \max\{X_1, \ldots, X_n\} \) is a sufficient statistic.

Here we use Factorization theorem to prove it again.

\[f(x_1, \ldots, x_n, \theta) = \prod_{i=1}^{n} \frac{1}{\theta} I(0 < x_i < \theta) = \frac{1}{\theta^n} \prod_{i=1}^{n} I(0 < x_i < \theta, i = 1, \ldots, n) \]

\[= \frac{1}{\theta^n} I(0 < y_n < \theta) \cdot 1 \]

\[\Rightarrow Y_n \text{ is sufficient for } \theta \]

Now, we prove it complete.

The p.d.f of \(Y_n \) is

\[f_{Y_n}(y) = n \left(\frac{y}{\theta}\right)^{n-1} \frac{1}{\theta} = \frac{n}{\theta^n} y^{n-1}, 0 < y < \theta \]
Suppose that $h(Y_n)$ satisfies $0 = E_\theta h(Y_n), \forall 0 < \theta < \infty$

$$0 = E_\theta h(Y_n) = \int_0^\theta h(y) \frac{n}{\theta^n} y^{n-1} dy = \frac{n}{\theta^n} \int_0^\theta h(y) y^{n-1} dy$$

$$\Leftrightarrow 0 = \int_0^\theta h(y) y^{n-1} dy, \forall \theta > 0$$

Taking differentiation both sides with θ.

$$\Leftrightarrow 0 = h(\theta) \theta^{n-1}, \forall \theta > 0$$

$$\Leftrightarrow 0 = h(y), 0 < y < \theta, \forall \theta > 0$$

$$\Leftrightarrow P_\theta(h(Y_n) = 0) = P_\theta(0 < Y_n < \theta) = 1, \forall \theta > 0$$

$$\Rightarrow Y_n = \max\{X_1, \ldots, X_n\} \text{ is complete.}$$

Def. If the p.d.f of r.v. X can be formulated as

$$f(x, \theta) = e^{a(x)b(\theta)+c(\theta)+d(x)}, l < x < q$$

where l and q do not depend on θ, then we say that f belongs to an exponential family.

Thm. Let X_1, \ldots, X_n be a random sample from $f(x, \theta)$ which belongs to an exponential family as

$$f(x, \theta) = e^{a(x)b(\theta)+c(\theta)+d(x)}, l < x < q$$

Then $\sum_{i=1}^n a(X_i)$ is a complete and sufficient statistic.

Note: We say that $X = Y$ if $P(X = Y) = 1$.

Thm. Lehmann-Scheffe

Let X_1, \ldots, X_n be a random sample from $f(x, \theta)$. Suppose that $U = u(X_1, \ldots, X_n)$ is a complete and sufficient statistic. If $\tilde{\tau} = t(U)$ is unbiased for $\tau(\theta)$, then $\hat{\tau}$ is the unique function of U unbiased for $\tau(\theta)$ and is a UMVUE of $\tau(\theta)$.

(Unbiased function of complete and sufficient statistic is UMVUE.)

Proof. If $\hat{\tau}^* = t^*(U)$ is also unbiased for $\tau(\theta)$, then

$$E_\theta(\hat{\tau} - \hat{\tau}^*) = E_\theta(\hat{\tau}) - E_\theta(\hat{\tau}^*) = \tau(\theta) - \tau(\theta) = 0, \forall \theta \in \Theta.$$

$$\Rightarrow 1 = P_\theta(\hat{\tau} - \hat{\tau}^* = 0) = P(\hat{\tau} = \hat{\tau}^*), \forall \theta \in \Theta.$$

$$\Rightarrow \hat{\tau}^* = \hat{\tau}, \text{ unbiased function of } U \text{ is unique.}$$

If T is any unbiased estimator of $\tau(\theta)$ then Rao-Blackwell theorem gives:
(a) $E(T|U)$ is unbiased estimator of $\tau(\theta)$.
By uniqueness, $E(T|U) = \hat{\tau}$ with probability 1.
(b) $\text{Var}_\theta(\hat{\tau}) = \text{Var}_\theta(E(T|U)) \leq \text{Var}_\theta(T), \forall \theta \in \Theta$.
This holds for every unbiased estimator T.
Then $\hat{\tau}$ is UMVUE of $\tau(\theta)$.

Two ways in constructing UMVUE based on a complete and sufficient statistic U:

(a) If T is unbiased for $\tau(\theta)$, then $E(T|U)$ is the UMVUE of $\tau(\theta)$.
This is easy to define but difficult to transform it in a simple form.

(b) If there is a constant such that $E(U) = c \cdot \theta$, then $T = \frac{1}{c}U$ is the UMVUE of θ.

Example:

(a) Let X_1, \ldots, X_n be a random sample from $U(0, \theta)$.
Want UMVUE of θ.

sol: $Y_n = \max\{X_1, \ldots, X_n\}$ is a complete and sufficient statistic.
The p.d.f of Y_n is
\[
f_{Y_n}(y, \theta) = n\left(\frac{y}{\theta}\right)^{n-1} \frac{1}{\theta} = n \frac{y^{n-1}}{\theta^n}, 0 < y < \theta
\]

$E(Y_n) = \int_0^\theta y^n \frac{y^{n-1}}{\theta^n} dy = \frac{n}{n+1} \theta$.
We then have $E(\frac{n+1}{n}Y_n) = \frac{n+1}{n} E(Y_n) = \theta$.
So, $\frac{n+1}{n} Y_n$ is the UMVUE of θ.

(b) Let X_1, \ldots, X_n be a random sample from Bernoulli(p).
Want UMVUE of θ.

sol: The p.d.f is
\[
f(x, p) = p^x (1-p)^{1-x} = (1-p)\left(\frac{p}{1-p}\right)^x = e^{x \ln(\frac{p}{1-p}) + \ln(1-p)}
\]

$\Rightarrow \sum_{i=1}^n X_i$ is complete and sufficient.
$E(\sum_{i=1}^n X_i) = \sum_{i=1}^n E(X_i) = np$
$\Rightarrow \hat{p} = \frac{1}{n} \sum_{i=1}^n X_i = \bar{X}$ is UMVUE of p. 39
(c) $X_1, \ldots, X_n \overset{iid}{\sim} N(\mu, 1)$.
Want UMVUE of μ.

sol: The p.d.f of X is

$$f(x, \mu) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2}} = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x^2-2\mu x+\mu^2)}{2}} = e^{\mu x - \frac{x^2}{2} - \ln \sqrt{2\pi}}$$

$$\Rightarrow \sum_{i=1}^{n} X_i \text{ is complete and sufficient.}$$

$$E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i) = n\mu$$

$$\Rightarrow \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X} \text{ is UMVUE of } \mu.$$

Since X_1 is unbiased, we see that $E(X_1 | \sum_{i=1}^{n} X_i) = \bar{X}$

(d) $X_1, \ldots, X_n \overset{iid}{\sim} \text{Possion}(\lambda)$.
Want UMVUE of $e^{-\lambda}$.

sol: The p.d.f of X is

$$f(x, \lambda) = \frac{1}{x!} \lambda^x e^{-\lambda} = e^{x \ln \lambda - \lambda - \ln x!}$$

$$\Rightarrow \sum_{i=1}^{n} X_i \text{ is complete and sufficient.}$$

$$E(I(X_1 = 0)) = P(X_1 = 0) = f(0, \lambda) = e^{-\lambda} \text{ where } I(X_1 = 0) \text{ is an indicator function.}$$

$$\Rightarrow I(X_1 = 0) \text{ is unbiased for } e^{-\lambda}$$

$$\Rightarrow E(I(X_1 = 0) | \sum_{i=1}^{n} X_i) \text{ is UMVUE of } e^{-\lambda}.$$
Chapter 5. Confidence Interval

Let Z be the r.v. with standard normal distribution $N(0, 1)$
We can find z_α and $z_{\alpha/2}$ that satisfy
\[
\alpha = P(Z \leq -z_\alpha) = P(Z \geq z_\alpha) \quad \text{and} \quad 1 - \alpha = P(-z_{\alpha/2} \leq Z \leq z_{\alpha/2}).
\]

A table of $z_{\alpha/2}$ is the following:

<table>
<thead>
<tr>
<th>$1 - \alpha$</th>
<th>$z_{\alpha/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>1.28 ($z_{0.1}$)</td>
</tr>
<tr>
<td>0.9</td>
<td>1.645 ($z_{0.05}$)</td>
</tr>
<tr>
<td>0.95</td>
<td>1.96 ($z_{0.025}$)</td>
</tr>
<tr>
<td>0.99</td>
<td>2.58 ($z_{0.005}$)</td>
</tr>
<tr>
<td>0.9973</td>
<td>3 ($z_{0.00135}$)</td>
</tr>
</tbody>
</table>

Def. Suppose that we have a random sample from $f(x, \theta)$. For $0 < \alpha < 1$, if there exists two statistics $T_1 = t_1(X_1, \ldots, X_n)$ and $T_2 = t_2(X_1, \ldots, X_n)$ satisfying
\[
1 - \alpha = P(T_1 \leq \theta \leq T_2)
\]
We call the random interval (T_1, T_2) a $100(1 - \alpha)$% confidence interval of parameter θ. If $X_1 = x_1, \ldots, X_n = x_n$ is observed, we also call $(t_1(X_1, \ldots, X_n), t_2(X_1, \ldots, X_n))$ a $100(1 - \alpha)$% confidence interval (C.I.) for θ

Constructing C.I. by pivotal quantity:

Def. A function of random sample and parameter, $Q = q(X_1, \ldots, X_n, \theta)$, is called a pivotal quantity if its distribution is independent of θ

With a pivotal quantity $q(X_1, \ldots, X_n, \theta)$, there exists a, b such that
\[
1 - \alpha = P(a \leq q(X_1, \ldots, X_n, \theta) \leq b), \forall \theta \in \Theta.
\]

The interest of pivotal quantity is that there exists statistics $T_1 = t_1(X_1, \ldots, X_n)$ and $T_2 = t_2(X_1, \ldots, X_n)$ with the following 1-1 transformation
\[
a \leq q(X_1, \ldots, X_n, \theta) \leq b \iff T_1 \leq \theta \leq T_2
\]
Then we have $1 - \alpha = P(T_1 \leq \theta \leq T_2)$ and (T_1, T_2) is a $100(1 - \alpha)$% C.I. for θ

Confidence Interval for Normal mean:
Let X_1, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$. We consider the C.I. of
parameter \(\mu \).

(I) \(\sigma = \sigma_0 \) is known

\[
X \sim N(\mu, \frac{\sigma_0^2}{n}) \Rightarrow \frac{X - \mu}{\sigma_0/\sqrt{n}} \sim N(0, 1)
\]

\[
1 - \alpha = P(-z_{\frac{\alpha}{2}} \leq Z \leq z_{\frac{\alpha}{2}}), Z \sim N(0, 1)
\]

\[
= P(-z_{\frac{\alpha}{2}} \leq \frac{X - \mu}{\sigma_0/\sqrt{n}} \leq z_{\frac{\alpha}{2}})
\]

\[
= P(-z_{\frac{\alpha}{2}} \frac{\sigma_0}{\sqrt{n}} \leq X - \mu \leq z_{\frac{\alpha}{2}} \frac{\sigma_0}{\sqrt{n}})
\]

\[
= P(\frac{X - \mu}{\frac{\sigma_0}{\sqrt{n}}} \leq \frac{\sigma_0}{\sqrt{n}} \leq X + \frac{\sigma_0}{\sqrt{n}})
\]

\[
\Rightarrow (X - z_{\frac{\alpha}{2}} \frac{\sigma_0}{\sqrt{n}}, X + z_{\frac{\alpha}{2}} \frac{\sigma_0}{\sqrt{n}}) \text{ is a } 100(1 - \alpha)\% \text{ C.I. for } \mu.
\]

ex: \(n = 40, \sigma_0 = \sqrt{10}, \bar{x} = 7.164 \) (\(X_1, \ldots, X_{40} \iid N(\mu, 10) \).)

Want a 80% C.I. for \(\mu \).

sol: A 80% C.I. for \(\mu \) is

\[
(X - z_{\frac{0.8}{2}} \frac{\sigma_0}{\sqrt{n}}, X + z_{\frac{0.8}{2}} \frac{\sigma_0}{\sqrt{n}}) = (7.164 - 1.28 \frac{\sqrt{10}}{\sqrt{40}}, 7.164 + 1.28 \frac{\sqrt{10}}{\sqrt{40}})
\]

\[
= (6.523, 7.805)
\]

\[
P(X - z_{\frac{0.8}{2}} \frac{\sigma_0}{\sqrt{n}} \leq \mu \leq X + z_{\frac{0.8}{2}} \frac{\sigma_0}{\sqrt{n}}) = 1 - \alpha = 0.8
\]

\[
P(6.523 \leq \mu \leq 7.805) = 1 \text{ or } 0
\]

(II) \(\sigma \) is unknown.

Def. If \(Z \sim N(0, 1) \) and \(\chi^2(r) \) are independent, we call the distribution of the r.v.

\[
T = \frac{Z}{\sqrt{\frac{\chi^2(r)}{r}}}
\]

a \(t \)-distribution with \(r \) degrees of freedom.

The p.d.f of \(t \)-distribution is

\[
f_T(t) = \frac{\Gamma\left(\frac{r+1}{2}\right)}{\Gamma\left(\frac{r}{2}\right)} \frac{1}{\sqrt{\pi r}(1 + \frac{t^2}{r})^{\frac{r+1}{2}}}, -\infty < t < \infty
\]
∵ \(f_T(-t) = f_T(t) \)
∴ t-distribution is symmetric at 0.

Now \(X_1, \ldots, X_n \overset{iid}{\sim} N(\mu, \sigma^2) \). We have

\[
\begin{align*}
\{ & \bar{X} \sim N(\mu, \frac{\sigma^2}{n}) \\
& \frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1) \} \overset{indep.}{\Rightarrow} \left\{ \begin{array}{l}
\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1) \\
\frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1)
\end{array} \right. \overset{indep.}{\Rightarrow} \\
T = \frac{\bar{X} - \mu}{\frac{(n-1)s^2}{\sigma^2(n-1)}} = \frac{\bar{X} - \mu}{s / \sqrt{n}} \sim t(n-1)
\end{align*}
\]

Let \(t_{\frac{\alpha}{2}} \) satisfies

\[
1 - \alpha = P(-t_{\frac{\alpha}{2}} \leq \frac{\bar{X} - \mu}{s / \sqrt{n}} \leq t_{\frac{\alpha}{2}})
= P(-t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} \leq \bar{X} - \mu \leq t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}})
= P(\bar{X} - t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} \leq \mu \leq \bar{X} + t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}})
\Rightarrow (\bar{X} - t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}, \bar{X} + t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}) \text{ is a } 100(1 - \alpha)\% \text{ C.I. for } \mu.
\]

ex: Suppose that we have \(n = 10, \bar{x} = 3.22 \) and \(s = 1.17 \). We also have \(t_{0.025} = 2.262 \). Want a 95\% C.I. for \(\mu \).

sol: A 95\% C.I. for \(\mu \) is

\[
(3.22 - 2.262 \frac{1.17}{\sqrt{10}}, 3.22 + 2.262 \frac{1.17}{\sqrt{10}}) = (2.34, 4.10)
\]