LECTURE 6: CONVERGENCE OF AN ALGORITHM

1. Concept of convergence
2. Rate of convergence
General solution method

• General iterative descent algorithm

Step 1: (Initialization)
Start from a solution point x^0.
Set $k = 0$.

Step 2: (Optimality Check)
Check if x^k is optimal (or near optimal).
If Yes, stop and output x^k.

Step 3: (Movement)
Move to an improved solution point x^{k+1}.
(Possibly, $x^{k+1} = x^k + \alpha_k d_k$.)
Set $k \leftarrow k + 1$ and go to Step 2.
Basic terminologies

- Proceeding from \(k \) to \(k + 1 \) (a cycle from \(2 \rightarrow 3 \rightarrow 2 \)) means an iteration.

- An algorithm always terminates (at Step 2) with a desired solution point in a finite number of iterations is a finite algorithm.

- For an infinite sequence of solution points generated by an algorithm, \(\{x^k \mid k = 0, 1, \cdots \} \), if \(\{x^k\} \) (or a subsequence \(\{x^{k_i}\} \)) converges to a point \(x^* \) that is a desirable solution point, then the algorithm is convergent.
Convergence proof

• Given an iterative algorithm, we need to show that, under certain conditions, the sequence of solutions generated by the algorithm indeed converges to a desired solution.

 - How to come up with such a proof of convergence for the algorithm you designed?
Basic terminologies

- An algorithm converges to a desired solution from any given starting point is said to be globally convergent.

- Let X be a “space” of interests. An algorithm “A” initiated at $x^0 \in X$ would generate a sequence $\{x^k\}$ defined by

$$x^{k+1} = A(x^k),$$

when A is a point-to-point mapping, or

$$x^{k+1} \in A(x^k),$$

when A is a point-to-set mapping.
Definitions

1. An algorithm “A” is a mapping defined on a space X that assigns to every point $x \in X$ a subset of X.

2. Let $\Gamma \subseteq X$ be a solution set of interests and A is an algorithm on X. A continuous real-valued function z on X is a descent function for Γ and A, if

 (i) $z(y) < z(x)$, $\forall x \notin \Gamma$ and $y \in A(x)$.

 (ii) $z(y) \leq z(x)$, $\forall x \in \Gamma$ and $y \in A(x)$.
Definitions

3. A point-to-set mapping $A : X \rightarrow Y$ is **closed at** $x \in X$, if the conditions

 “$x_k \rightarrow x$, $x_k \in X$” and

 “$y_k \rightarrow y$, $y_k \in A(x_k)$”

 imply “$y \in A(x)$”.

Moreover, A is **closed on** X if it is closed at each point of X.
Observations

Let X be closed. Then

(i) A is closed on X if and only if

$$\text{graph}(A) = \{(x, y) \mid x \in X, \ y \in A(x)\}$$

is closed.

(ii) If A is a point-to-point mapping, then continuity implies closedness.
Global convergence theorem

Let X be a space of interests, $\Gamma \subset X$ be a solution set of interests, A be an algorithm on X, and $\{x^k\}_{k=0}^{\infty}$ be a sequence of solutions generated by A from a given x^0 such that $x^{k+1} \in A(x^k)$.

If

(i) $\{x^k\} \subset S$ (a compact subset of X);

(ii) \exists a descent function \approx for Γ and A;

(iii) A is closed at points outside Γ;

then the limit of any convergent subsequence of $\{x^k\}$ is a solution point in Γ.
Rate of convergence

• Basic concept:
 Let \(\{r_k\}_{k=0}^{\infty} \) be a decreasing sequence of “errors” between a current solution and the desired solution. If the sequence converges to zero, we would like to know “how fast” it converges.

• Example

\(\{\frac{1}{k}\} \) ? \(\{\left(\frac{1}{2}\right)^k\} \) ? \(\{\left(\frac{1}{k}\right)^k\} \) ? \(\{\left(\frac{1}{2}\right)^{2^k}\} \) ?

• Which one converges fastest?
Terminologies

• Definition
Let \(\{r_k\}_{k=0}^{\infty} \) be a bounded sequence of real numbers and \(s_k = \sup\{r_i \mid i \geq k\} \).

The limit superior of \(\{r_k\} \) is

\[
\lim_{k \to \infty} r_k \triangleq \lim_{k \to \infty} s_k.
\]

• Definition
Let \(\{r_k\}_{k=0}^{\infty} \) be a convergent sequence of real numbers with \(\lim_{k \to \infty} r_k = r^* \).

The order of convergence of \(\{r_k\} \) is defined as the supremum of the nonnegative numbers \(p \) satisfying

\[
0 \leq \lim_{k \to \infty} \frac{|r_{k+1} - r^*|}{|r_k - r^*|^p} < \infty.
\]
(i) If the situation of $\frac{0}{0}$ is not involved, we usually consider the definition as

$$\lim_{k \to \infty} \frac{|r_{k+1} - r^*|}{|r_k - r^*|^p} = \beta.$$

In this case,

$$|r_{k+1} - r^*| = \beta |r_k - r^*|^p.$$
Observations

(ii) \(\{r_k\}_{k=1}^{\infty} \) converges faster for larger \(p \).

(a) \(r_k = a^k \) (with \(0 < a < 1 \)) converges to 0 with \(p = 1 \), since \(\frac{r_{k+1}}{r_k} = a \);

(b) \(r_k = a^{2^k} \) (with \(0 < a < 1 \)) converges to 0 with \(p = 2 \), since \(\frac{r_{k+1}}{r_k^2} = 1 \).
Linear rate of convergence

- **Definition:**

 If the sequence \(r_k \) converges to \(r^* \) such that

 \[
 \lim_{k \to \infty} \frac{|r_{k+1} - r^*|}{|r_k - r^*|} = \beta < 1,
 \]

 we say \(\{r_k\} \) converges linearly to \(r^* \) with

 convergence ratio \(\beta \).
Observations

(i) The tail of \(\{r_k\} \) converges at least as fast as the geometric sequence \(c\beta^k \) for some constant \(c \) (geometric convergence).

(ii) A linearly convergent sequence with smaller \(\beta \) converges faster.

(iii) \(\beta = 0 \) is referred to as superlinear convergence.

(iv) Any convergent sequence with \(p > 1 \) is superlinear.
Examples

(i) \(\{r_k = \frac{1}{k}\} \rightarrow 0. \)

\[\lim_{k \to \infty} \frac{r_{k+1}}{r_k} = 1. \]

The convergence is of order 1, but it is not linear!

(ii) \(\{r_k = \left(\frac{1}{k}\right)^k\} \rightarrow 0. \)

(a) \(\lim_{k \to \infty} \frac{r_{k+1}}{r_k} = 0. \)

The convergence is superlinear.

(b) \(\lim_{k \to \infty} \frac{r_{k+1}}{r_k^p} = \infty \) for any \(p > 1. \) The convergence is of order 1 only!
Examples

- Order 1 convergence: \(\{ \frac{1}{k} \} \).
 (Arithmetic convergence)

- Linear convergence: \(\{(\frac{1}{2})^k\} \).
 (Geometric convergence)

- Superlinear convergence: \(\{(\frac{1}{\log(k+1)})^k\}; \{(\frac{1}{k})^k\} \).

- Quadratic convergence: \(\{(\frac{1}{2})^{2^k}\} \).