§13.3 Arc Length and Curvature

1. **Arc length** : \(r(t) = \langle x(t), y(t) \rangle \text{ or } \langle x(t), y(t), z(t) \rangle \)

\[
L = \int_{a}^{b} \sqrt{(dx)^2 + (dy)^2} \\
= \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt \\
= \int_{a}^{b} |r'(t)| \, dt
\]

(i). 從物理角度看：

- \(r'(t) \) 代表物體在 \(t \) 時間的瞬間速度
- \(|r'(t)| \) 代表物體在 \(t \) 時間的瞬間速率
- \(|r'(t)| \Delta t = \) 小範圍的距離

\[
\Rightarrow \int_{a}^{b} |r'(t)| \, dt = \text{代表此物體從 } t = a \text{ 到 } t = b \text{ 所走過的距離}
\]

2. **Arc length function** (or Distance Function)

\[
s(t) = \int_{a}^{t} |r'(u)| \, du. \\
\Rightarrow \frac{ds}{dt} = |r'(t)| = \text{距離的變化率} = \text{速度}.
\]

Example 1:

Find the length of the curve \(r(t) = \left\langle \sin 2t, \cos 2t, 2t^2 \right\rangle, 0 \leq t \leq 1. \)

\[
(A) \, \frac{2}{27} \left(13\sqrt{13} - 8\right) \quad (B) \, \frac{13}{9} \quad (C) \, \frac{13\sqrt{13} - 6}{27} \quad (D) \, \frac{16}{9}
\]

Solution :

(A)

Example 2:

Let \(C \) be a curve described by \(x = f(t), y = g(t), \alpha \leq t \leq \beta, \) where \(f' \) and \(g' \) are continuous on [\(\alpha, \beta \)] and \(C \) is traversed exactly once as \(t \) runs from \(\alpha \) to \(\beta \). Which one of the following is always true?
(A) \[\int_{\alpha}^{\beta} \sqrt{\frac{dx}{dt}^2 + \frac{dy}{dt}^2} \, dt \geq \beta - \alpha \]

(B) \[\int_{\alpha}^{\beta} \sqrt{\frac{dx}{dt}^2 + \frac{dy}{dt}^2} \, dt \geq \sqrt{\beta^2 + \alpha^2} \]

(C) \[\int_{\alpha}^{\beta} \sqrt{\frac{dx}{dt}^2 + \frac{dy}{dt}^2} \, dt \geq \beta - \alpha \]

(D) \[\int_{\alpha}^{\beta} \left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 \, dt \geq \sqrt{(y(\beta) - y(\alpha))^2 + (x(\beta) - x(\alpha))^2} \]

Solution :

(D)

Example 3 :

Let the distance traveled by a particle with position

\((x(t), y(t)) = (\sin^2 t, \cos^2 t)\) as \(t\) varies from \(t = 0\) to \(t = 3\pi\) be \(d\).

Then \(d = ?\)

(A) \(\sqrt{2}\) (B) 0 (C) 6\(\sqrt{2}\) (D) 4\(\sqrt{2}\)

Solution :

(C)

3. 將一個 curve 用 arc length(s) 來作參數式是一個非常有用的想法和技巧。
(如此的表達方式不隨著不同座標系統而改變)

4. Unit tangent vector : \(T(t) = \frac{r'(t)}{|r'(t)|}\).
5. **Curvature** (曲率) : a measure of how quickly the curve changes direction at a given point.

Definition :
\[\kappa = \frac{dT}{ds} \]

Example 4 :
Show that the curvature of a circle with radius \(a \) is \(\frac{1}{a} \).

Theorem :
(i). \[\kappa = \frac{dT}{ds} = \frac{dT}{ds} = \left| \frac{T'(t)}{r'(t)} \right| = \frac{|r'(t) \times r''(t)|}{|r'(t)|^3} \]

(ii). Given a plane curve \(y = f(x) \), then its curvature \(\kappa \) at a given point \(x \) is
\[\kappa(x) = \frac{|f''(x)|}{(1 + (f'(x))^2)^{3/2}} \]

Proof :
(i). \[r' = \left| r' \right| T = \frac{ds}{dt} T \quad \text{(1)} \]

\[r'' = \frac{d^2 s}{dt^2} T + \frac{ds}{dt} T' \quad \text{(2)} \]

\[(1) \times (2) \]

\[r' \times r'' = \left(\frac{ds}{dt} \right)^2 (T \times T'). \]

\[|r' \times r''| = \left(\frac{ds}{dt} \right)^2 |T||T'| = \left(\frac{ds}{dt} \right)^2 |T'| \]

\[|T'| = \frac{|r' \times r''|}{\left(\frac{ds}{dt} \right)^2} = \frac{|r' \times r''|}{|r'|^2} \]

\[\kappa = \frac{|T'|}{|r'|} = \frac{|r' \times r''|}{|r'|^3} \]

6. **Principal unit normal vector** \(N(t) \).
\[N(t) = \frac{T'(t)}{|T'(t)|} \]
7. Binormal vector $B(t)$.

\[B(t) = T(t) \times N(t) \]