LECTURE 3: GEOMETRY OF LP

1. Terminologies
2. Background knowledge
3. Graphic method
4. Fundamental theorem of LP
Terminologies

- **Baseline model:**

\[
\begin{align*}
\text{Min } & \quad c^T x \\
\text{(LP) } & \quad \text{s. t. } A x = b \\
& \quad x \geq 0
\end{align*}
\]

- **Feasible domain**

\[P = \{ x \in \mathbb{R}^n \mid A x = b, x \geq 0 \}\]

- **Feasible solution**

\[x \text{ is a \underline{feasible solution} if } x \in P.\]

- **Consistency**

\[\text{When } P \neq \emptyset, \text{ LP is \underline{consistent}.}\]
Terminologies

• Bounded feasible domain:

\[P \text{ is bounded if} \]
\[\exists \ M > 0 \text{ such that } \|x\| \leq M, \forall \ x \in P. \]

In this case, we say “LP has bounded feasible domain.”

• Bounded LP:

\[\text{LP is bounded if} \]
\[\exists \ M \in \mathbb{R} \text{ such that } c^T x \geq M \ \forall \ x \in P. \]

• Question: LP has a bounded feasible domain.

\[\downarrow \uparrow \]

LP is bounded.
Terminologies

• Optimal solution:
 \(x^* \) is an optimal solution if
 \[
 x^* \in P \quad \text{and} \quad c^T x^* = \min_{x \in P} c^T x
 \]

• Optimal solution set
 \[
 P^* = \{x^* \mid x^* \text{ is optimal}\}
 \]

• We say
 \(x^* \) solves LP, if \(x^* \in P^* \).
Background knowledge

- Observation 1: each equality constraint in the standard form LP is a “hyperplane” in the solution space.

- What does the equation \(x_1 - 2x_2 = 30 \) represent in the 2-d Euclidean space?

Definition:

For a vector \(a \in \mathbb{R}^n, a \neq 0 \), and a scalar \(\beta \in \mathbb{R} \), define

\[
H = \{ x \in \mathbb{R}^n | a^T x = \beta \} \text{ hyperplane}
\]
Hyperplane

- Geometric representation
Properties of hyperplanes

• Property 1: The normal vector \(\mathbf{a} \) is orthogonal to all vectors in the hyperplane \(H \).

• Proof:

\[
\forall y, z \in H, \quad a^T(y - z) = a^T y - a^T z = \beta - \beta = 0.
\]
Properties of hyperplane

• Property 2: The normal vector is directed toward the upper half space.

• Proof:

For any \(z \in H, w \in H_L^i \),

\[
\begin{align*}
\mathbf{a}^T(w - z) &= \mathbf{a}^T w - \mathbf{a}^T z \\
&< \beta - \beta = 0.
\end{align*}
\]
Properties of feasible solution set

- **Definition:**
 A polyhedral set or polyhedron is a set formed by the intersection of a finite number of a closed half spaces. If it is nonempty and bounded, it is a polytope.

- **Property 3:**
 The feasible domain of a standard form LP
 \[P = \{ x \in \mathbb{R}^n | Ax = b, x \geq 0 \} \]
 is a polyhedral set.
Properties of optimal solutions

• Property 4:

If $P \neq \emptyset$ and $\exists \beta \in \mathbb{R}$ such that

$$P \subset H_L := \{x \in \mathbb{R}^n \mid -c^T x \leq \beta\},$$

then $\min_{x \in P} c^T x \geq -\beta$

Moreover, if $x^* \in P \cap H$ then $x^* \in P^*$.
Example

• Give the following LP

Minimize \(-x_1 - 2x_2\)

s. t. \begin{align*}
x_1 + x_2 & \leq 40 \\
2x_1 + x_2 & \leq 60 \\
x_1, x_2, & \geq 0
\end{align*}

• Covert to standard form

Minimize \(-x_1 - 2x_2\)

s. t. \begin{align*}
x_1 + x_2 + x_3 & = 40 \\
2x_1 + x_2 + x_4 & = 60 \\
x_1, x_2, x_3, x_4 & \geq 0
\end{align*}

c = \begin{pmatrix} -1 \\ -2 \\ 0 \\ 0 \end{pmatrix}, \quad A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 40 \\ 60 \end{pmatrix}
Since $\min_{x \in P} c^T x \geq -80$
also $-x_1 - 2x_2 = -80$ at $(0, 40)$

Hence $\begin{cases} x_1 = 0 \\ x_2 = 40 \end{cases}$ is an optimal solution.
Graphic Method

Step 1: Draw the feasible domain P.
 (If $P = \emptyset$, STOP! No solution.)

Step 2: Use $-c$ as normal vector at each vertex to see
 if $P \in H_L := \{ x \in \mathbb{R}^n | -c^T x \leq \beta \}$ for some
 $\beta \in \mathbb{R}$.

1. If the answer is “YES”, we find an optimal
 solution.

2. If all answers are “NO”, the problem is
 unbounded below.
Pros and Cons

• Advantages:
 - Geometrically simple.

• Disadvantages
 - Algebraically difficult
 How many vertices are there?
 How to identify each vertex?
Any better way?

- Simplex method

A way to *generate and manage the vertices* of the feasible solution set, which is a polyhedral set.
Background knowledge

• Definition: Let \(x^1, x^2, \ldots, x^p \in \mathbb{R}^n, \lambda_1, \lambda_2, \ldots, \lambda_p \in \mathbb{R}, \) and

\[
x = \sum_{i=1}^{p} \lambda_i x^i = \lambda_1 x^1 + \lambda_2 x^2 + \cdots + \lambda_p x^p
\]

we say \(x \) is a linear combination of \(\{x^1, \ldots, x^p\} \).

• If \(\sum_{i=1}^{p} \lambda_i = 1 \), we say \(x \) is an affine combination of \(\{x^1, \ldots, x^p\} \).

• If \(\lambda_i \geq 0 \), we say \(x \) is a conic combination of \(\{x^1, \ldots, x^p\} \).

• If \(\sum_{i=1}^{p} \lambda_i = 1, \lambda_i \geq 0 \), we say \(x \) is a convex combination of \(\{x^1, \ldots, x^p\} \).
Sets generated by different combinations of two points

Affine combination

Convex combination

Conical combination
Affine set, convex set, and cone

- Definition: Let S be a subset of \mathbb{R}^n.

 If the affine combination of any two points of S falls in S, then S is an **affine set**.

 If the convex combination of any two points of S falls in S, then S is a **convex set**.

 If $\lambda x \in S$ for all $x \in S$ and $\lambda \geq 0$, then S is a **cone**.
Example

- Which one is convex? Which one is affine?

\[H = \{ x \in \mathbb{R}^n | a^T x = \beta \} \]
\[H_L = \{ x \in \mathbb{R}^n | a^T x \leq \beta \} \]
\[P = \{ x \in \mathbb{R}^n | Ax = b, x \geq 0 \} \]
Example

What’s the geometric meaning of the feasible domain?

\[P = \{ x \in \mathbb{R}^n | Ax = b, x \geq 0 \} \]

1. P is a **polyhedral** set.
2. P is a **convex** set.
3. P is the intersection of *m* hyperplanes and the cone of the first orthant.
4. “Ax = b and x ≥ 0” means that the rhs vector b falls in the cone generated by the columns of constraint matrix A.
Example - continue

5. Actually, the set

$$A_c = \{ y \in \mathbb{R}^m | y = Ax, x \in \mathbb{R}^n, x \geq 0 \}$$

is a convex cone generated by the columns of matrix A.
Interior and boundary points

• Given a set, what’s the difference between an interior point and a boundary point?

• Definition: Given a set $S \subseteq \mathbb{R}^n$, a point $x \in S$ is an interior point of S, if
 \[\exists \epsilon > 0 \text{ such that } \{ y \in \mathbb{R}^n \mid \| x - y \| \leq \epsilon \} \subseteq S. \]
 Otherwise, x is a boundary point of S.

• We denote that
 \[
 \text{int}(S) = \{ x \text{ is an interior point of } S \} \\
 \text{bdry}(S) = \{ x \text{ is an boundary point of } S \}
 \]
Boundary points of convex sets

- What’s special about boundary points of a convex set?
- Separation Theorem:

\[S \subseteq \mathbb{R}^n \text{ is convex, then } \forall x \in \text{bdry}(S), \exists \text{ a hyperplane } H \text{ such that } x \in H \text{ and either } S \subseteq H_L \text{ or } S \subseteq H_U. \]
Question

• Can you now see that if an LP (in two or three dimensions) has a finite optimal solution, then one vertex of P is optimal?

• Hint: Consider the supporting hyperplane

\[H = \{ x \in \mathbb{R}^n | -c^T x = \beta \} \]

• How about higher dimensional case?
 - This leads to the Fundamental Theorem of LP.
Are all boundary points the same?

- Some sits on the shoulders of others, and some don’t.
- Definition: *x* is an extreme point of a convex set *S* if *x* cannot be expressed as a convex combination of other points in *S*.
Geometrical meaning of extreme points

Definition:

Let P be a convex polyhedron and H be a supporting hyperplane of P, then $F = P \cap H$ defines a **face** of P.

- When $\dim(F) = 0$, it is a **vertex**
- $\dim(F) = 1$, it is an **edge**
- $\dim(F) = \dim(P) - 1$, a **facet**

Theorem:

Let P be a convex polyhedron, $x \in P$ is a vertex if and only if x is an extreme point of P.
Representation of extreme points

- For the feasible domain P of an LP, its **vertices are** the **extreme points**. How can we take this advantage to generate and manage all vertices?

x is an extreme point of P, then x is of course a feasible solution of

\[
\begin{cases}
 Ax = b \\
 x \geq 0
\end{cases}
\]

But what’s special of being an extreme point? (in terms of feasible solution).
Learning from example

Minimize \(x_1 - 2x_2 \)
subject to \(x_1 + x_2 + x_3 = 40 \)
\(2x_1 + x_2 + x_4 = 60 \)
\(x_1, x_2, x_3, x_4 \geq 0. \)
What’s special?

- Vertices

\[
v^1 = \begin{pmatrix} 0 \\ 0 \\ 40 \\ 60 \end{pmatrix}, v^2 = \begin{pmatrix} 30 \\ 0 \\ 10 \\ 0 \end{pmatrix}, v^3 = \begin{pmatrix} 20 \\ 20 \\ 0 \\ 0 \end{pmatrix}, v^4 = \begin{pmatrix} 0 \\ 40 \\ 0 \\ 20 \end{pmatrix}.
\]

- Edge

\[
v^5 = \begin{pmatrix} 20 \\ 0 \\ 20 \\ 20 \end{pmatrix} \quad \text{← one zero } x_i
\]

- Interior

\[
v^6 = \begin{pmatrix} 15 \\ 15 \\ 10 \\ 15 \end{pmatrix} \quad \text{← no zero } x_i
\]

\[n = 4, \ m = 2, \ n - m = 2\]
Observations

• Ax = b has n variables in m linear equations.

• When $n > m$, we only need to consider m variables in m equations for solving a system of linear equations.

• An extreme point of P is obtained by setting $n - m$ variables to be zero and solving the remaining m variables in m equations.

• the columns of A corresponding to the non-zero (positive) variables better be linear independent!
Example

- System of equations

\[
\begin{align*}
 x_1 + x_2 + x_3 &= 40 \\
 2x_1 + x_2 + x_4 &= 60 \\
 x_1, x_2, x_3, x_4 &\geq 0.
\end{align*}
\]

- Linear independence of the columns

\[
\begin{pmatrix}
 1 \\ 2
\end{pmatrix} x_1 +
\begin{pmatrix}
 1 \\ 1
\end{pmatrix} x_2 +
\begin{pmatrix}
 1 \\ 0
\end{pmatrix} x_3 +
\begin{pmatrix}
 0 \\ 1
\end{pmatrix} x_4 =
\begin{pmatrix}
 40 \\ 60
\end{pmatrix}
\]
Finding extreme points

• Theorem:
A point $x \in P = \{x \in \mathbb{R}^n | Ax = b, x \geq 0\}$ is an extreme point of P if and only if the columns of A corresponding to the positive components of x are linearly independent.

• Proof:
Without loss of generality, we may assume that the first p components of x are positive and rest are zero, i.e.,

$$
x = \begin{pmatrix} \bar{x} \\ 0 \end{pmatrix} \text{ where } \bar{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} > 0
$$

also denote the first p columns of A by \bar{A}, then

$$
Ax = \bar{A}\bar{x} = b.
$$
Proof - continue

Suppose that the columns of \bar{A} are not linearly independent, then $\exists \bar{w} \neq 0$ such that $\bar{A}\bar{w} = 0$. Notice that for ϵ is small enough $\bar{x} + \epsilon\bar{w} \geq 0$ and $\bar{A}(\bar{x} + \epsilon\bar{w}) = \bar{A}\bar{x} = b$

Hence

$$y^1 = \left(\begin{array}{c} \bar{x} + \epsilon\bar{w} \\ 0 \end{array} \right) \in P$$

$$y^2 = \left(\begin{array}{c} \bar{x} - \epsilon\bar{w} \\ 0 \end{array} \right) \in P$$

and $x = \frac{1}{2} y^1 + \frac{1}{2} y^2$, i.e. x can not be a vertex (extreme point) of P.

Thus, x is an extreme point \Rightarrow columns of \bar{A} are linearly independent.
Proof - continue

Suppose that x is not an extreme point, then

$x = \lambda y^1 + (1 - \lambda)y^2$ for some $y^1, y^2 \in P$, $y^1 \neq y^2$ and $0 < \lambda < 1$.

Since $y^1 \geq 0, y^2 \geq 0$ and $0 < \lambda < 1$.

the last $n - p$ components of y^1 must be zero, i.e.

$$y^1 = \begin{pmatrix}
\bar{y}^1 \\
0
\end{pmatrix}$$

Now

$$x - y^1 = \begin{pmatrix}
\bar{x} - \bar{y}^1 \\
0
\end{pmatrix} \neq 0$$

and $A(x - y^1) = Ax - Ay^1 = b - b = 0$

\Rightarrow columns of A are linearly dependent.

Thus, columns of \bar{A} are linearly independent

\Rightarrow x is an extreme point.
Managing extreme points algebraically

- Let A be an m by n matrix with $m \leq n$, we say A has full rank (full row rank) if A has m linearly independent columns.
- In this, we can rearrange

$$
\begin{align*}
x &= \begin{pmatrix} x_B \\ x_N \end{pmatrix} & \leftarrow & \text{basic variables} \\
A &= \begin{pmatrix} B & | & N \end{pmatrix} \\
& \uparrow & \uparrow \\
& \text{basis} & \text{non-basis}
\end{align*}
$$

- Definition: (basic solution and basic feasible solution)

If we set $x_N = 0$ and solve x_B for $Ax = Bx_B = b$, then x is a basic solution (bs).

Furthermore, if $x_B \geq 0$, then x is a basic feasible solution (bfs).
Example of basic and basic feasible solutions

Minimize $x_1 - 2x_2$
subject to $x_1 + x_2 + x_3 = 40$
$2x_1 + x_2 + x_4 = 60$
$x_1, x_2, x_3, x_4 \geq 0.$

$v^1 = \begin{pmatrix} 0 \\ 0 \\ 40 \\ 60 \end{pmatrix}$, $v^2 = \begin{pmatrix} 30 \\ 10 \\ 0 \\ 0 \end{pmatrix}$, $v^3 = \begin{pmatrix} 20 \\ 0 \\ 0 \\ 0 \end{pmatrix}$, $v^4 = \begin{pmatrix} 0 \\ 0 \\ 40 \\ 20 \end{pmatrix}$, $v^5 = \begin{pmatrix} 20 \\ 0 \\ 20 \\ 0 \end{pmatrix}$, $v^6 = \begin{pmatrix} 15 \\ 0 \\ 10 \\ 15 \end{pmatrix}$

$v^7 = \begin{pmatrix} 40 \\ 0 \\ 0 \\ -20 \end{pmatrix}$, $v^8 = \begin{pmatrix} 0 \\ 60 \\ -20 \\ 0 \end{pmatrix}$
Further results

• Observation: When A does not have full rank, then either
 (1) Ax = b has no solution and hence \(P = \emptyset \), or
 (2) some constraints are redundant.

 For the second case, after removing the redundant constraints, new A has full rank.

• Corollary: A point \(x \) in \(P \) is an extreme point of \(P \) if and only if \(x \) is a bfs corresponding to some basis \(B \).

• Corollary: The polyhedron \(P \) has only a finite number of extreme points.

 \textbf{Proof:} \# of ways to choose \(m \) linearly independent columns from \(n \) columns
 \[\leq C(n, m) = \frac{n!}{m!(n-m)!}. \]
Are there many vertices for LP?

• Yes!

\[C(n, m) = \frac{n!}{m!(n-m)!} \]

• This is **not a small number**, when \(n \) and \(m \) become large. Please try it out by taking \(n = 100 \) and \(m = 50 \).
What do extreme points bring us?

• Observation:
 When \(P = \{ x \in \mathbb{R}^n | Ax = b, x \geq 0 \} \)
 is a nonempty polytope, then any point in \(P \) can be represented
 as a convex combination of the extreme points of \(P \).

Question: Can it be more general?
Extremal direction for unboundedness

- When \(P \) is unbounded, we need a direction leading to infinity.

- Definition:
 - A vector \(d \neq 0 \in \mathbb{R}^n \) is an extremal direction of \(P \), if
 \[
 \{ x \in \mathbb{R}^n \mid x = x^0 + \lambda d, \quad \lambda \geq 0 \} \subset P
 \]
 for all \(x^0 \in P \).

- Observations:
 1. \(P \) is unbounded \(\iff \) \(P \) has an extremal direction.
 2. \(d \neq 0 \) is an extremal direction of \(P \) \(\iff \)
 \[
 Ad = 0 \quad \text{and} \quad d \geq 0
 \]
Resolution theorem

• Theorem:

Let $V = \{v^i \in \mathbb{R}^n | i \in I\}$ be a set of all extreme points of P, I is a finite index set, then $\forall x \in P$, we have

$$x = \sum_{i \in I} \lambda_i v^i + d$$

where

$$\sum_{i \in I} \lambda_i = 1, \lambda_i \geq 0 \ \forall i \in I.$$

and either $d = 0$ or d is an external direction of P.

• We can also write

$$x = \sum_{i \in I} \lambda_i v^i + s \ d, \ \text{for some } s \geq 0.$$
Implications of resolution theorem

• Corollary:
 If P is bounded (a polytope), then any x in P can be expressed as a convex combination of its extreme points.

• Corollary:
 If P is nonempty, then it has at least one extreme point.

Note that $x = \sum_{i \in I} \lambda_i v^i + s d$ implies that the objective value of x is determined by the objective values of extreme points and extremal direction.
Fundamental theorem of LP

• Theorem: For a standard form LP, if its feasible domain P is nonempty, then the optimal objective value of $z = c^T x$ over P is either unbounded below, or it is attained at (at least) an extreme point of P.

• Proof:
 By the resolution theorem, there are two cases:
 Case 1:

 P has an extremal direction d such that $c^T d < 0$. Hence P is unbounded and $z \to -\infty$ along d.
Proof - continue

Case 2: \(P \) does not have any extremal direction \(d \) such that \(c^T d < 0 \), then \(\forall x \in P \), either
\[
x = \sum_{i \in I} \lambda_i v^i \quad \text{with} \quad \sum_{i \in I} \lambda_i = 1, \ \lambda_i \geq 0, \quad \text{or}
\]
\[
x = \sum_{i \in I} \lambda_i v^i + \bar{d} \quad \text{with} \quad c^T \bar{d} \geq 0.
\]

In both cases,
\[
c^T x = c^T \left[\sum_{i \in I} \lambda_i v^i \right] (+c^T \bar{d})
\geq \sum_{i \in I} \lambda_i (c^T v^i)
\geq \min_{i \in I} \{c^T v^i\} \left(\sum_{i \in I} \lambda_i \right)
= \min_{i \in I} \{c^T v^i\}
= c^T v^{\text{min}}.
\]

Hence the minimum of \(z \) is attained at one extreme point!