Integrated Local VSL and Ramp Metering Control to Mitigate Recurrent Bottlenecks

Base Model-I

2015.03.03
Outline

- Introduction
- Macroscopic Traffic flow Model
- Control Algorithms
 - Feedback Control
 - Integrated Control
- Case Study
- Advanced model
Introduction

- Local bottleneck
 - Lane drop
 - Work zone
 - Tunnels, narrow bridges, etc.

How to deal with this issue?
Introduction

- **Control Strategies**
 - Variable speed limits
 - Ramp metering

- How to design the control system?
- How to coordinate these two strategies?
Macroscopic Simulation Model

- Flow conservation:
 \[\rho_i(k+1) = \rho_i(k) + \frac{\Delta T}{L_i \lambda_i} [q_{i-1}(k) - q_i(k) + r_i(k) - s_i(k)] \]

- Speed-density relationship:
 \[V[\rho_i(k)] = v_{f,i} \exp \left[-\frac{1}{a_i} \left(\frac{\rho_i(k)}{\rho_{cr,i}} \right)^a \right] \]

- Dynamic speed equation:
 \[v_i(k+1) = v_i(k) + \frac{\Delta T}{\tau_i} \left[V(\rho_i(k)) - v_i(k) \right] + \frac{\Delta T}{L_i} v_i(k) [v_{i-1}(k) - v_i(k)] - \frac{v_i \Delta T [\rho_{i+1}(k) - \rho_i(k)]}{\tau_i L_i} \frac{\rho_i(k) + \kappa_i}{\rho_i(k)} \]

- Flow equation:
 \[q_i(k) = \rho_i(k) v_i(k) \lambda_i \]
Macroscopic Simulation Model

- Ramp queue length:
 \[w_i(k+1) = w_i(k) + \Delta T [d_i(k) - r_i(k)] \]

- On-ramp flow rate:
 \[0 \leq r_i(k) = \min \{ d_i(k) + w_i(k) / \Delta T, RM(k) \} \]
 - \(d_i(k) \): on-ramp demand (veh/h)
 - \(r_i(k) \): on-ramp flow rate (veh/h)
 - \(RM(k) \): ramp metering rate (veh/h)
 - \(w_i(k) \): on-ramp queue length (veh)
Macroscopic Simulation Model

Model calibration

- v_f, ρ_{cr}, α
 - calibrated based on the fundamental diagram
 - constructed from collected field data

- τ, V, K
 - calibrated to minimize the summation of percentage differences in speed and flow rate between the model and field data

$$\text{Error} = \sum_{j=1}^{J} \sum_{k=1}^{K} \left(\frac{v_{\text{mes}}(k, j) - v_{\text{model}}(k, j)}{v_{\text{mes}}(k, j)} \right)^2 \left(\frac{q_{\text{mes}}(k, j) - q_{\text{model}}(k, j)}{q_{\text{mes}}(k, j)} \right)^2$$

- Solution method:
 - Sequential quadratic programming

- Initial starting point:
 - Latin hypercube sampling

k: time index

j: segment index
Feedback Control

Initialization
k=0, m=1

Detector Data

k=mN_R?

No

k=N_V?

No

Yes

Ramp Metering

m=m+1

k=k+1

Yes

VSL Control

k=mN_R?

Yes

Detector Data

k: time step
m: counter
N_R: control interval for ramp metering
N_V: control interval for VSL
In general, N_R<N_V
Feedback Control

Ramp metering

\[
RM_{Temp}(m+1) = RM(m) + K_r \times (o_{cr} - o_{target}(m))
\]

\[
RM(m+1) = \min(RM_{Temp}(m+1), RM_{up})
\]

\[
RM(m+1) = \max(RM_{Temp}(m+1), RM_{Low})
\]

if \(w(m) > w_{\text{max}} \)

Override the ramp metering system to prevent queue spillback

- \(o_{target}(m) \): detected average occupancy over the target segment at the \(m_{th} \) control interval
- \(o_{cr} \): critical occupancy (%)
- \(K_r \): positive constant parameter
- \(RM(m) \): ramp metering rate at the \(m_{th} \) control interval (veh/h)
- \(RM_{up} \): lower bound of the ramp metering rate (veh/h)
- \(RM_{low} \): upper bound of the ramp metering rate (veh/h)
- \(w(m) \): queue length at the \(m_{th} \) control interval (veh)
- \(w_{\text{max}} \): maximum allowed queue length (veh)
Feedback Control

- **VSL Control**

 \[\text{if } o_{\text{target}}(t) > o_{\text{cr}} \]
 \[VSL_{1_Temp}(t+1) = VSL_1(t) - \Delta \]
 \[VSL_1(t+1) = \max(VSL_{1_Temp}(t+1), \text{Lower}) \]

 \[\text{else } \]
 \[VSL_{1_Temp}(t+1) = VSL_1(t) + \Delta \]
 \[VSL_1(t+1) = \min(VSL_{1_Temp}(t+1), \text{Upper}) \]

 \[\text{end } \]

 \[VSL_0(t+1) = VSL_1(t+1) \]
 \[VSL_2(t+1) = \min(VSL_1(t+1) + \Delta, \text{Upper}) \]
 \[VSL_3(t+1) = \min(VSL_2(t+1) + \Delta, \text{Upper}) \]

- \(o_{\text{target}}(t) \): detected average occupancy of the target segment at the \(t \)th control interval (%)

- \(o_{\text{cr}} \): critical occupancy (%)

- \(VSL_i(t) \): Speed displayed for VSL \(i \) at the \(t \)th control interval (km/h)

- \(\Delta \): VSL speed increment (km/h)

- Lower: lower bound of the speed limit (km/h)

- Upper: upper bound of the speed limit (km/h)

- \(VSL_{\text{-1}} \): critical VSL

- \(VSL_{\text{-2,3}} \): upstream VSLs

- \(VSL_{\text{-0}} \): downstream of \(VSL_{\text{-1}} \), whose speed is always set equal to \(VSL_{\text{-1}} \), in case there is on-ramp between \(VSL_{\text{-1}} \) and the bottleneck.
Integrated Control

k: time step
m: counter
N_R: control interval for ramp metering
N_V: control interval for VSL
In general, $N_R < N_V$

1. Initialization
 $k=0$, $m=1$

2. Detector Data
 - Yes
 - No

3. Ramp metering
 - Yes
 - No
 - $k=mN_R$?

4. Traffic flow model

5. Optimization model

6. VSL Control
 - Yes
 - No
 - $k=N_V$?

7. $k=m+1$

8. $m=m+1$

9. $k=k+1$
Integrated Control

- **VSL control**
 - adjusted over N_V unit intervals
 - use the same control strategy in the feedback control

- **Ramp metering**
 - Objective: minimize the proposed cost function
 - Predict the traffic conditions for the next N_V intervals
 - Adjust the metering rate over every N_R intervals based on the computed objective function

N_R: control interval for ramp metering
N_V: control interval for VSL
In general, $N_R < N_V$
Integrated MPC Control

- **Ramp metering**
 - **Objective function**
 - to minimize the weighted total travel time and maximize the weighted total travel distance
 - Penalize when the density of the target segment goes above the critical density

 $\text{Min Cost} = \alpha_{\text{TTT}} \sum_{k=k_0+1}^{k_0+N_t} \sum_{j=1}^{J} \left[\rho_j(k) \lambda_j L_j + w_j(k) \right] - \alpha_{\text{TTD}} \sum_{k=k_0+1}^{k_0+N_t} \sum_{j=1}^{J} \rho_j(k) v_j(k) \lambda_j L_j + \delta(k_0)$

 $\delta(k_0) = \begin{cases}
 0 & \text{if mean} \left[\rho_{\text{target}}(k_0 + 1 : k_0 + N_r) \right] < \rho_{cr} \\
 M & \text{if mean} \left[\rho_{\text{target}}(k_0 + 1 : k_0 + N_r) \right] \geq \rho_{cr}
 \end{cases}$

 - where, k_0 is the current time step, M is a very large number
 - **Solution method**
 - Sequential quadratic programming
Case Study

- **Freeway No.5**
 - Length: 54 km
 - Su Ao – Nan Gang
 - Hsuehshan Tunnel
 - Length: 12.9 km
 - 28.15 km – 15.25 km
 - Network covered by Macro-Simulation
 - 32.7 km – 23.5 km

Covered area

Traffic Safety and Operations Lab
University of Maryland, College Park
Case Study

- **Segment length**: about 500m
- **Four VSL signs, one ramp metering**
Case Study

- Why starts from 23.5 km?
 - That is where congestion starts.

- Why ends at 32.7 km?
 - Congestion tail ends before this position.
Model calibration results

25.6 km

26.3 km
Model calibration results

27.8 km

28.4 km
Results Comparison

Total travel time

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>No Control</th>
<th>Feedback VSL Only</th>
<th>Feedback RM Only (Ramp queue < 100)</th>
<th>Feedback VSL+RM (Ramp queue < 100)</th>
<th>Integrated VSL+RM (Ramp queue < 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Travel Time (veh*h)</td>
<td>1326</td>
<td>1219</td>
<td>1309</td>
<td>1186</td>
<td>1168</td>
</tr>
<tr>
<td>Improvement (%)</td>
<td>N/A</td>
<td>8%</td>
<td>1%</td>
<td>10.6%</td>
<td>11.9%</td>
</tr>
</tbody>
</table>
Results Comparison

- Speed evolution: @ 25.6 km
Results Comparison

- Speed evolution: @ 26.3 km
Results Comparison

- Speed evolution: @ 27.8 km
Results Comparison

❖ Speed evolution: @ 28.4 km

<table>
<thead>
<tr>
<th></th>
<th>No Control</th>
<th>VSL only</th>
<th>RM only</th>
<th>VSL+RM FB</th>
<th>VSL+RM Opt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed (km/h)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time (min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
On-going Work

- Calibrate the VISSIM network
- Extend the control strategies to the entire freeway segment.
- Incorporate VSL compliance rates into the prediction and simulation model
Thank you.
yanglu@umd.edu