Finding #(2p) from a Product of Sines

Thomas J. Osler

Stable URL:
http://links.jstor.org/sici?sici=0002-9890%28200401%29111%3A1%3C52%3AFZFAPO%3E2.0.CO%3B2-L

The American Mathematical Monthly is currently published by Mathematical Association of America.
Finding $\zeta(2p)$ From a Product of Sines

Thomas J. Osler

The zeta function $\zeta(z)$ given by the series $\zeta(z) = \sum_{n=1}^{\infty} n^{-z}$ (valid when $\text{Re}(z) > 1$) was first evaluated in closed form by Euler [5] for z a positive even integer $2p$. The result is

$$\zeta(2p) = \sum_{n=1}^{\infty} \frac{1}{n^{2p}} = \frac{(-1)^{p+1}2^{2p-1}B_{2p}}{(2p)!} \pi^{2p}. \quad (1)$$

Here the numbers B_n are called Bernoulli numbers, and they are all rational. The first few are

$$B_0 = 1, \quad B_1 = -\frac{1}{2}, \quad B_2 = \frac{1}{6}, \quad B_4 = -\frac{1}{30}, \quad B_6 = \frac{1}{42}, \ldots.$$

while $B_3 = B_5 = B_7 = \ldots = 0$. These can all be calculated recursively by starting with $B_0 = 1$ and using the identity $B_n = \sum_{k=0}^{n} \binom{n}{k} B_k$ for $n = 2, 3, 4, \ldots$. When $n = 2$, this gives $B_2 = -1/2$. (See Knopp [6, p. 183] for an equivalent formula.) Several additional methods of deriving (1) have been given since Euler’s time, some of which are found in [1], [3], [4], and [6]. We present a method here that we were unable to locate in the literature.

We begin our evaluation of $\zeta(2p)$ by considering the following two lemmas.

Lemma 1. If $\sum_{n=1}^{\infty} a_n$ is an absolutely convergent series of complex numbers, then the infinite product $\prod_{n=1}^{\infty} (1 + a_n z)$ is an entire function of z whose power series expansion about the origin begins as follows:

$$\prod_{n=1}^{\infty} (1 + a_n z) = 1 + \left(\sum_{n=1}^{\infty} a_n \right) z + \cdots.$$

This lemma is an immediate consequence of [6, Example 1, p. 439], where explicit formulas are also given for the coefficients of z^2, z^3, \ldots (Euler himself used this lemma but he required the coefficients of the higher powers of z as well. In this paper, we need only the constant and first-order terms of the expansion.)
The next lemma is the well-known factorization of $1 - t^p$ in terms of pth roots of unity.

Lemma 2. If $\omega = e^{\pi i/p}$, where p is a positive integer, the following algebraic identity is valid for all t: $\prod_{k=0}^{p-1} (1 - \omega^k t) = 1 - t^p$.

When $t = z^2/(\pi^2 n^2)$, Lemma 2 gives

$$\prod_{k=0}^{p-1} \left(1 - \frac{(\omega^k z)^2}{\pi^2 n^2}\right) = 1 - \frac{z^{2p}}{\pi^2 p n^{2p}}. \tag{2}$$

We next use the infinite product representation

$$\sin z = z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{\pi^2 n^2}\right)$$

with z replaced by $\omega^k z$ and form the finite product of sines

$$\prod_{k=0}^{p-1} \sin(\omega^k z) = \omega^{p(p-1)/2} z^p \prod_{n=1}^{\infty} \prod_{k=0}^{p-1} \left(1 - \frac{(\omega^k z)^2}{\pi^2 n^2}\right)$$

$$= \omega^{p(p-1)/2} z^p \prod_{n=1}^{\infty} \left(1 - \frac{z^{2p}}{\pi^2 n^{2p}}\right),$$

where in the last step we invoke (2). Now define

$$g(z) = \omega^{p(1-p)/2} \prod_{k=0}^{p-1} \sin(\omega^k z) = z^p \prod_{n=1}^{\infty} \left(1 - \frac{z^{2p}}{\pi^2 n^{2p}}\right)$$

and apply Lemma 1 to obtain the power series expansion

$$g(z) = \omega^{p(1-p)/2} \prod_{k=0}^{p-1} \sin(\omega^k z) = z^p - \frac{\zeta(2p)}{\pi^2 p} z^{3p} + \cdots. \tag{3}$$

To find $\zeta(2p)$ from (3), we could replace each sine function with its Taylor series, multiply these series, and then equate coefficients of z^{3p}. However, to derive (1), it is easier if we first take the derivative of $g(z)$. From (3) we get

$$g'(z) = p z^{p-1} - 3 p \frac{\zeta(2p)}{\pi^2 p} z^{3p-1} + \cdots. \tag{4}$$

Another form of expansion (4) can be obtained by logarithmic differentiation of the finite product defining $g(z)$. This leads to

$$\frac{g'(z)}{g(z)} = \sum_{k=0}^{p-1} \omega^k \cot(\omega^k z),$$

hence to
\[g'(z) = g(z) \sum_{k=0}^{p-1} \omega^k \cot(\omega^k z) = \left(z^p - \frac{\zeta(2p)}{\pi^{2p}} z^{2p} + \cdots \right) \sum_{k=0}^{p-1} \omega^k \cot(\omega^k z). \quad (5) \]

To evaluate \(\zeta(2p) \) we equate the coefficient of \(z^{3p-1} \) in (4) with that in (5). Contributions to this coefficient in (5) come from two sources arising from the Laurent expansion of the sum of cotangents, namely, from the coefficient of \(z^{-1} \) and from the coefficient of \(z^{2p-1} \). Because

\[\cot z = \frac{1}{z} + \sum_{r=1}^{\infty} c_r z^{2r-1}, \]

where \(c_r = (-1)^r 2^{2r} B_{2r}/(2r)! \),

\[\omega^k \cot(\omega^k z) = \frac{1}{z} + \omega^k \sum_{r=1}^{\infty} c_r (\omega^k z)^{2r-1} = \frac{1}{z} + \sum_{r=1}^{\infty} c_r \omega^{2rk} z^{2r-1}. \]

When this is summed over \(k \) the total contribution from \(z^{-1} \) is \(p \), while that from \(z^{2p-1} \) is \(pc_p \), because \(\omega^{2p} = 1 \). Equating the coefficient of \(z^{3p-1} \) in (4) with the corresponding one in (5), we find that

\[-3p \frac{\zeta(2p)}{\pi^{2p}} = -p \frac{\zeta(2p)}{\pi^{2p}} + pc_p.\]

This gives \(\zeta(2p) = -c_p \pi^{2p}/2 = (-1)^{p+1} 2^{2p-1} B_{2p}/(2p)! \), as required. \(\blacksquare \)

ACKNOWLEDGEMENT. The author wishes to thank the referee for considerably improving the exposition of this note.

REFERENCES

1. T. M. Apostol, Another elementary proof of Euler's formula for \(\zeta(2n) \), this MONTHLY 80 (1973) 425–431.

Mathematics Department, Rowan University, Glassboro, NJ 08028
Osler@rowan.edu

A Very Simple and Elementary Proof of a Theorem of Ingelstam

S. H. Kulkarni

1. INTRODUCTION. The aim of this note is to give a very simple and elementary proof of the following interesting theorem due to Ingelstam [4].

© THE MATHEMATICAL ASSOCIATION OF AMERICA