§4-7 Optimization

*微積分方法:求最大值與最小值,可利用下列兩種方法。

1. f is continuous on [a, b], 比較 critical points and endpoints.

х	а	critical points	b
y			

2. f has exactly one critical point c in the internal I.

If

 $\Rightarrow f(c)$ is an absolute minimum.

If

 $\Rightarrow f(c)$ is an absolute maximum.

Example 1: A cylindrical can is to be made to hold 1l of oil.

(i) Find the dimensions that will minimize the cost the metal to manufacture the can? $(\frac{h}{r} = 2)$

- (ii) Suppose the top and bottom discs are cut from squares of side 2r. ($\frac{h}{r} = \frac{8}{\pi} \approx 2.55$)
- (iii) How about discs cut from hexagons?

Solution:

Known that
$$V = \pi r^2 h = 1000$$

Minimize
$$A(r) = 2\pi r^2 + 2\pi r h = 2\pi r^2 + \frac{2000}{r}, \quad 0 < r < \infty.$$

$$A'(r) = 4\pi r - \frac{2000}{r^2} = \frac{4(\pi r^3 - 500)}{r^2}$$

$$\Rightarrow r = \left(\frac{500}{\pi}\right)^{\frac{1}{3}}(cm)$$

$$\frac{dS}{dr} = \frac{+}{\left(\frac{500}{\pi}\right)^{\frac{1}{3}}}$$

$$\Rightarrow S\left[\left(\frac{500}{\pi}\right)^{\frac{1}{3}}\right] \text{ is an absolute minimum.}$$

$$\Rightarrow h = \frac{1000}{\pi \left(\frac{500}{\pi}\right)^{\frac{2}{3}}} = 2\sqrt[3]{\frac{500}{\pi}} = 2r.$$

Example 2: A box with a square base and open top must have a volume of $32000 \, cm^3$. Find the dimensions of the box that minimize the amount of material of material used.

Solution:

Known that $V = x^2 h = 32000$

Minimize:
$$x^2 + 4xh = x^2 + \frac{128000}{x} = f(x)$$

$$f'(x) = 2x - \frac{128000}{x^2} = \frac{2(x^3 - 64000)}{x^2}, \quad 0 < x < \infty.$$

$$\Rightarrow$$
 x = 40, *h* = 20.

Example 3: A man launches his boat from point A on a bank of a straight river, 5km wide, and wants to reach point B, 5km down on the opposite bank, as quick as possible. If he can row 6 km/h and run 8 km/h, where should he land to reach B as soon as possible?

Let T be the time the man spend arriving B.

Minimize
$$T(x) = \frac{\sqrt{25 + x^2}}{6} + \frac{5 - x}{8}, \quad 0 \le x \le 5$$

$$\Rightarrow T'(x) = \frac{1}{6} \left(\frac{1}{2} \times \frac{2x}{\sqrt{25 + x^2}} \right) - \frac{1}{8}$$

Let
$$T'(x) = 0$$

$$\Rightarrow \frac{1}{6} \left(\frac{x}{\sqrt{25 + x^2}} \right) - \frac{1}{8} = 0$$

$$\Rightarrow 4x = 3\sqrt{25 + x^2}$$

$$\Rightarrow 16x^2 = 225 + 9x^2$$

$$\Rightarrow x = \frac{15}{\sqrt{7}} > 5.$$

х	0	5
у	$\frac{35}{24} \approx 1.458$	$\frac{5}{6}\sqrt{2} \approx 1.179$

He should row directly to B.

Example 4: A cone-shaped drinking cup is made from radius *R* by cutting out a sector and joining the edges *CA* and *CB*. Find the maximum capacity of such a cup.

$$V(h) = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi (R^2 - h^2)h$$

$$= \frac{\pi}{3}R^2 h - \frac{\pi}{3}h^3, \quad 0 < h < R.$$

$$\Rightarrow V'(h) = \frac{\pi}{3}(R^2 - 3h^2)$$
Let $V'(h) = 0$

$$\Rightarrow h = \frac{1}{\sqrt{3}}R$$

$$V'$$
 $\frac{1}{\sqrt{3}}R$

$$\Rightarrow V(\frac{1}{\sqrt{3}}R) = \frac{2\pi}{9\sqrt{3}}R^3$$
 is the maximum.

*想一想:為達最大容量,角度 θ 要取多少?

Ans:
$$\theta = 2\pi \left(1 - \frac{\sqrt{6}}{3}\right) \approx 66.06^{\circ}$$
.

Example 5: The upper right-hand corner of a piece of paper, 12 *cm* by 8 *cm*, as in the figure, is folded over to the bottom edge.

How would you fold it, so as to minimize the length of the fold? In other words, how would you choose *x* to minimize *y*?

$$\Delta OCD \sim \Delta BAO$$

$$\Rightarrow \frac{8}{\sqrt{y^2 - x^2}} = \frac{4\sqrt{x - 4}}{x}$$

$$\Rightarrow (y^2 - x^2) \times (x - 4) = 4x^2, \quad 4 < x \le 8 \quad (why?)$$

$$\Rightarrow y^2 = \frac{4x^2}{x - 4} + x^2 = \frac{x^3}{x - 4} \stackrel{\triangle}{=} f(x), \quad 4 < x \le 8.$$

$$\Rightarrow f'(x) = \frac{2x^2(x-6)}{(x-4)^2} = 0$$
$$\Rightarrow x = 6.$$

$$\Rightarrow y = 6\sqrt{3}$$
.

*想一想:這個問題和紙張的長邊長度有關嗎?

Example 6: An observer stands at a point P, one unit away from a track. Two runners stand at the point S in the figure and run along the track. One runner runs three times as fast as other. Find the maximum value of the observer's angle of sight between runners?

Solution:

Runner B runs three times as fast as runner A

$$\tan \theta = \tan(\theta + \alpha - \alpha) = \frac{\tan(\theta + \alpha) - \tan \alpha}{1 + \tan(\theta + \alpha) \tan \alpha}$$

$$= \frac{3x - x}{1 + 3x^2} = \frac{2x}{1 + 3x^2} \stackrel{\triangle}{=} f(x), \quad 0 \le x < \infty.$$

$$\Rightarrow f'(x) = \frac{2(1 - 3x^2)}{(1 + 3x^2)^2} = 0$$

$$\Rightarrow x = \frac{1}{\sqrt{3}} \quad (x \ge 0)$$

$$f'$$
 $+$ $\frac{1}{\sqrt{3}}$

$$\Rightarrow \tan \theta = \frac{2\frac{1}{\sqrt{3}}}{1+3\times\left(\frac{1}{\sqrt{3}}\right)^2} = \frac{1}{\sqrt{3}}$$

 $\Rightarrow \theta = \frac{\pi}{6}$ is the max angle of sight.

Example 7: Where should the point P be chosen on the line segment AB so as to maximize the angle θ ?

$$\tan \theta = \tan(\pi - (\alpha + \beta)) = -\tan(\alpha + \beta)$$

$$= -\left(\frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}\right) = \frac{\frac{5}{x} + \frac{2}{3 - x}}{\left(\frac{5}{x} \times \frac{2}{3 - x}\right) - 1}$$

$$= \frac{3(5 - x)}{x^2 - 3x + 10} \stackrel{\triangle}{=} f(x), \quad 0 \le x \le 5.$$

$$f'(x) = \frac{3(x^2 - 10x + 5)}{(x^2 - 3x + 10)^2} = 0$$

$$\Rightarrow x = 5 \pm 2\sqrt{5} \quad (5 + 2\sqrt{5} > 3\pi \, \triangle)$$

 $\Rightarrow x = 5 - 2\sqrt{5}$ will maximize the angle θ .

