§3-10 Linear Approximations and Differentials

*Given f(x),利用"過 a 點的切線方程式"來逼近當 x 靠近 a 的 f(x)。

- $\Delta x = dx = \text{initial error.}$
- Approximate error = dy = f'(a)dx.
- Exact error = $\Delta y = f(a + \Delta x) f(a)$.
- dx and dy are called differentials.

*公式:

1. $\Delta y \approx dy = f'(a)dx$ when $\Delta x = dx$ is small.

在實際問題上,我們常能以dy(較好算)來逼近 Δy (較難算)。

2. L(x) = y = f(a) + f'(a)(x - a) = f(a) + dy is the linear approximation or tangent line approximation of f at a.

• y = L(x)是過(a, f(a))和f(x)相切的切線 方程式。

$$\bullet \quad \lim_{x \to a} (f(x) - L(x)) = 0.$$

(⇒誤差=
$$|f(x)-L(x)|$$
→0, as x →0.)

$$\bullet \lim_{x \to a} \frac{f(x) - L(x)}{x - a} = 0$$

(⇒誤差→0的速度比 $x-a \to 0$ 當

 $x \rightarrow a$ 的速度還快).

Example 1:

- (i). Find the linearization of $f(x) = \sqrt{x+3}$ at a = 1.
- (ii). Use (i) to approximate $\sqrt{3.98}$ and $\sqrt{4.05}$.

Solution:

$$f'(x) = \frac{1}{2}(x+3)^{-\frac{1}{2}} \Rightarrow f'(1) = \frac{1}{4}$$
$$\Rightarrow L(x) = f(1) + f'(1)(x-1) = 2 + \frac{1}{4}(x-1).$$

$$\sqrt{3.98} \approx 2 + \frac{1}{4}(0.98 - 1) = 1.995$$
.

$$\sqrt{4.05} \approx 2 + \frac{1}{4}(1.05 - 1) = 2.0125$$
.

	х	From $L(x)$	Actual value
$\sqrt{3.9}$	0.9	1.975	1.97484176
$\sqrt{3.98}$	0.98	1.995	1.99499373
$\sqrt{4}$	1	2	2.00000000
$\sqrt{4.05}$	1.05	2.0125	2.01246117
$\sqrt{4.1}$	1.1	2.025	2.02484567
$\sqrt{5}$	2	2.225	2.23606797
$\sqrt{6}$	3	2.5	2.44948974

Example 2: The radius of a sphere was measured and found to be 21 *cm* with a possible error in measurement of at most 0.05 *cm*. What is the maximum error in using the value of radius to compute the volume of the sphere? (Use differential to estimate such maximum error.)

Solution:

$$V = \frac{4}{3}\pi r^3$$

$$\Rightarrow \frac{dV}{dr} = 4\pi r^2$$

$$\Rightarrow dV = 4\pi r^2 dr = 4\pi (21)^2 (0.05) \approx 277 \text{ cm}^3.$$

Example 3: Approximate ln(1.05).

Solution:

Let
$$y = \ln x$$

$$\Rightarrow dy = \frac{dx}{x} = \frac{0.05}{1} = 0.05$$

$$\Rightarrow \ln(1.05) \approx \ln 1 + 0.05 = 0.05.$$

- **Example 4**: Suppose that the only information we have about a function f is that f(1) = 5 and the graph of its derivative is as shown.
 - (a) Use a linear approximation to estimate f(0.9) and f(1.1).
 - (b) Are your estimates in (a) too large or too small? Explain.

Solution:

Let L(x) be the tangent line of f(x) at x = 1.

$$\Rightarrow$$
 $L(x) = f(1) + f'(1)(x-1) = 5 + 2(x-1)$

$$\Rightarrow \begin{cases} f(0.9) \approx 5 + 2(-0.1) = 4.8 \\ f(1.1) \approx 5 + 2(0.1) = 5.2. \end{cases}$$

Since f'(x) > 0 and f''(x) < 0 whenever x is real, we have that the graph of f(x) near x = 1 may looks like the following:

The tangent line lies above the curve. Thus, the approximations in part (a) are too large.